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Abstract

We reexamine the idiosyncratic volatility puzzle of Ang et al. (2006) in the cross-section of stock returns

at the quarterly horizon and investigate the relative importance of cash flow and discount rate shocks in

driving the anomaly based on the news decomposition method of Vuolteenaho (2002) with quarterly data.

The result from idiosyncratic volatility-sorted quintile portfolios shows that the zero investment portfolio

constructed with two extreme portfolios earns about 1.3 percent (1.2 percent) alpha returns per quarter

on average after controlling the market factor (Fama–French factors). In addition, we create two decile

portfolios sorted on discount rate news volatilities and cash flow news counterparts. While the average

return of the arbitrage portfolio from discount rate news volatilities is insignificant, the counterpart from

cash flow news volatilities exhibits about 1.5 percent (1.2 percent) alpha returns per quarter on average

after considering the market factor (Fama–French factors). These findings indicate that cash flow news

volatilities rule most things about the anomaly rather than discount rate news counterparts. In addition,

the findings suggest that investors prefer cash flow news volatilities to discount rate news counterpartes,

and hence not all idiosyncratic volatilities are equally priced in the cross-section.
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The idiosyncratic volatility puzzle in the cross-section has been investigated over the past decade. Not only

our intuition but also economic theories predict zero or positive association between returns and volatilities.

Most evidences are exactly the opposite—returns and volatilities clearly exhibit a negative relationship.

According to a substantial body of empirical finance literature, this counterintuitive anomaly is not only

consistent after controlling other factors, but also robust to a variety of research designs (Ang et al., 2006,

2009; Jiang et al., 2009; Chen et al., 2012; Fink et al., 2012; Guo et al., 2014). In particular, it has attracted

a lot of interest from researchers because it is hard to reconcile these evidences with traditional asset pricing

paradigms—that is to say, this anomaly violates a high-risk high-return principle.

To fit this puzzle, previous papers have emphasized the importance of behavioral motives including

investor sentiment, conditional heteroskedasticity, return reversal, and skewness preference (Fu, 2009; Huang

et al., 2010; Bali et al., 2011; Stambaugh et al., 2015). However, none of the papers has paid attention to the

role of cash flow and discount rate news, which is a structural determinant of both returns and volatilities.

Studies concerning news decomposition methods likewise have paid no attention to the idiosyncratic volatility

anomaly notwithstanding its importance. They have highlighted the role of systematic risks instead to explain

the cross-section of returns (Campbell and Vuolteenaho, 2004; Campbell et al., 2010, 2013; Yeh et al., 2015).

Many studies have employed news decomposition methods to decompose stock returns at an aggregate

level since Campbell and Shiller (1988), but one of the most important papers is Vuolteenaho (2002), which

decomposes stock returns at an individual level rather than at an aggregate level using an accounting identity

framework and a panel VAR model. Unlike other papers that emphasizes the role of discount rate news in

determining stock returns at a macroeconomic level, this paper concludes that stock returns at a firm level are

mostly determined by cash flow news. As these two news components fundamentally determine both stock

returns and volatilities, one can figure out the structural forces that drive the aforementioned idiosyncratic

volatility puzzle by scrutinizing the news components.

In this paper, we reexamine the existence of the idiosyncratic volatility anomaly at the quarterly horizon

and investigate the relative importance of cash flow and discount rate news in driving this anomaly. We

estimate a panel VAR model with quarterly CRSP and Compustat data obtained from WRDS. Both discount

rate and cash flow news volatilities are computed using an EGARCH model following Fu (2009). Two decile

portfolios sorted on respective volatilities are created. While the average return of the arbitrage portfolio

constructed with discount rate news volatilities is insignificant, the average return of the arbitrage portfolio

constructed with cash flow news volatilities is positive and significant after controlling the market factor

(α=1.52%/quarter, t-statistic=2.24) or Fama–French factors (α=1.21%/quarter, t-statistic=1.81). This

result indicates that cash flow news volatilities rather than discount rate news volatilities mainly drive the

idiosyncratic volatility anomaly.
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Firstly, these findings are consistent with the result of Vuolteenaho (2002) as cash flow shocks rather

than discount rate shocks mostly drives the cross-section of returns. Secondly, the findings are similar to the

result of Campbell and Vuolteenaho (2004) as only the systematic or idiosyncratic cash flow risks are priced

in the cross-section, while the systematic or idiosyncratic discount rate risks are not. Thirdly, these findings

are simultaneously consistent with existing papers about the volatility anomaly (Ang et al., 2006, 2009) and

those about the skewness preference (Boyer et al., 2010; Bali et al., 2011). Most importantly, the findings

suggest that the idiosyncratic volatilities are priced in a meaningful way only when they contain information

about skewness. As discount rate volatilities deliver less information about how much returns are skewed,

they tend not to be priced in the cross-section.

Subsequent sections are organized in the following manner. Section I recalls the literature related to the

idiosyncratic volatility anomaly and the news decomposition methodology. Section II describes economic

models employed. Section III illustrates the data analyzed. Section IV demonstrates major findings. Section

V concludes this paper.

1 Literature Review

According to many theories, the relation between idiosyncratic risks and subsequent returns should be

insignificant or at least positive (Merton, 1987; Xu and Malkiel, 2004). Early findings report the insignificant

or positive relation between them at the aggregate level (Longstaff, 1989; Lehmann, 1990; Goyal and Santa-

Clara, 2003). However, recent evidences from cross-sections show the opposite relation between them at the

individual level. In the first subsection, we introduce several papers investigating the idiosyncratic volatility

anomaly. In the second subsection, we introduce another group of papers employing news decomposition

methods.

1.1 Cross-section of return and volatility

Fama and MacBeth (1973) use idiosyncratic volatilities as well as market betas in their return regression

models and exhibit that the coefficients for idiosyncratic volatilities are insignificant in almost every spec-

ification. However, their research concentrates on market betas rather than idiosyncratic volatilities hence

constructs market beta-sorted portfolios to mitigate measurement errors in market beta estimates. As a

result, their coefficients for idiosyncratic volatilities are biased and inconsistent due to measurement errors

in idiosyncratic volatility estimates.

In contrast, Ang et al. (2006) concentrate on idiosyncratic volatilities instead of market betas and show

the negative relation between idiosyncratic volatilities and subsequent returns. They use daily excess returns
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and Fama–French model to compute monthly idiosyncratic volatilities and investigate the performance of

idiosyncratic volatility-sorted portfolios. The authors confirm that the arbitrage portfolio outperforms even

after considering both risks and characteristics. In addition, the outperformance survives in different L/M/N

strategies and over various subsamples. This phenomenon is globally observed in the financial markets of

G7 countries as well (Ang et al., 2009).

Since monthly idiosyncratic volatilities are positively autocorrelated, Fu (2009) introduces EGARCH

model instead and uses monthly returns rather than daily returns. He demonstrates the positive relation

between expected idiosyncratic volatilities and subsequent returns This positive relation is consistent with

the theoretical prediction that suggests the positive risk premium for an idiosyncratic volatility under the

underdiversification, which is more realistic according to empirical findings (Campbell et al., 2001). However,

other literatures provide the opposite relation between out-of-sample EGARCH volatilities and following

returns as well (Fink et al., 2012; Guo et al., 2014).

In order to explain this counterintuitive relation between volatilities and returns, previous researches

have adopted skewness preference (Barberis and Huang, 2008; Boyer et al., 2010; Bali et al., 2011), liquidity

cost (Han and Lesmond, 2011), return reversal (Huang et al., 2010), January effect (Huang et al., 2011),

arbitrage asymmetry and investor sentiment (Stambaugh et al., 2015), etc. (Hou and Loh, 2016) assess the

explanatory power of these candidates and confirm that more than half of this anomaly remain unexplained.

1.2 News decomposition of return and volatility

Inherently, stock returns are driven by both cash flow news and discount rate news. This is intuitive since

the price is the expected value of discounted payoff (i.e. p = E[mx]). Campbell and Shiller (1988) firstly

propose the way to decompose these two components by applying both log-linearized dividend-price ratio

model and VAR model. They relate returns to dividend-price ratios as well as dividend growths and use

annual time-series at the aggregate level. Though the authors confirm the relative importance of cash flow

news and discount rate news in their findings, they focus not on returns but on dividend-price ratios.

Other early studies also investigate both cash flow news and discount rate news at the aggregate level

(Campbell, 1991; Campbell and Ammer, 1993). These researches report that stock returns are largely

determined not by cash flow news but by discount rate news at the aggregate level. On the other hand,

(Vuolteenaho, 2002) suggest another way to decompose by adopting log-linearized book-to-market ratio

model and VAR model. The author relates returns to book-to-market ratio and return on equity and use

annual panel at the individual level. Unlike the evidence from the aggregate level, the firm-level result

indicates that stock returns are mainly driven by cash flow news rather than discount rate news. Subsequent
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papers applying different methods provide consistent results as well (Callen and Segal, 2004; Chen et al.,

2013).

Since both aggregate level returns and firm-level returns can be disaggregated, the interaction among the

components has also been examined. Campbell and Vuolteenaho (2004) decompose the aggregate level data

into cash flow news and discount rate news. For individual returns, they use the two components to estimate

cash flow betas (i.e. “bad” betas) and discount rate betas (i.e. “good” betas) separately. The authors show

that value stocks tend to have high cash flow betas and growth stocks tend to have high discount rate betas.

Overall, this justifies the failure of CAPM after 1963 because cash flow betas are compensated more than

discount rate betas. Campbell et al. (2013) adopt the similar framework and compare the downturn of the

early 2000s, which is largely driven by discount rate news, and that of the late 2000s, which is mainly driven

by cash flow news.

Campbell et al. (2010) further decompose the firm-level data into cash flow news and discount rate news.

They use two aggregate level components CFm, DRm and two firm-level components CFi, DRi to estimate

four different betas (i.e. CFi-CFm betas, DRi-CFm betas, CFi-DRm betas, DRi-DRm betas). The authors

demonstrate that, while value stocks tend to have high CFi-CFm betas, growth stocks tend to have high

CFi-DRm betas. In contrast, they show that two firm-level discount rate betas of value stocks and growth

stocks are not significantly different from each other.

Other details of news decomposition methods have also been studied by previous literatures. Chen and

Zhao (2009) point out several vulnerabilities of these VAR-based decomposition methods and explore some

methodological remedies. Engsted et al. (2012) suggest another technical way to circumvent these issues.

Cenedese and Mallucci (2016) decompose aggregate level international stock returns and report that the

international returns are largely driven by cash flow news rather than discount rate news.

2 Economic Model

2.1 Idiosyncratic volatility

Firstly, we estimate idiosyncratic volatilities by using Fama–French model to check whether the idiosyncratic

volatility puzzle is consistent or not.

ritd − rftd = αit + βit (rmtd − rftd) + sitSMBtd + hitHMLtd + εitd.

The subscripts i, t and d stand for firm, quarter (or month) and day respectively. Overall, we follow the

details of Fama and French (1993) and Ang et al. (2006). Each quarter (month), we estimate this regression

5



model by using daily data and compute

√
V̂ar [εitd] quarter by quarter (month by month) recursively. we

exclude idiosyncratic volatilities that are computed with less than 31 (11) daily observations.

Secondly, we sort stocks based on these volatility estimates at the end of quarter (month) t and construct

value-weighted quintile portfolios for the quarter (month) t + 1, i.e. 3/3 (1/1) strategy of Jegadeesh and

Titman (1993). bbPortfolios are rebalanced each quarter (month). In addition, we construct zero investment

portfolio by buying the first (i.e. the least volatile) portfolio and selling the fifth (i.e. the most volatile) one.

Thirdly, we measure the performance of those portfolios based on their historical returns.

rpt − rft = αp + βp (rmt − rft) + spSMBt + hpHMLt + εpt.

For the portfolio p, we compute (i) sample statistics, (ii) CAPM statistics and (iii) Fama–French model

statistics by using its time-series.

2.2 News decomposition

To decompose firm-level stock returns, we adopt the framework of Vuolteenaho (2002). Unlike the method

of Campbell and Shiller (1988), this framework incorporates book-to-market ratio, return on equity and

clean-surplus relation to disaggregate firm-level returns.

θt ≈
∞∑
j=0

ρjrt+1+j −
∞∑
j=0

ρj (et+1+j − ft+j)

⇒ rt − Et−1 [rt] =∆Et

 ∞∑
j=0

ρj (et+j − ft+j)

+ κt −∆Et

 ∞∑
j=1

ρjrt+j


=Ncf,t −Nr,t.

For simplicity, we omit firm subscripts. The function Et[·] represents the expected value subject to the

information set available at time t, i.e. E [·|Ωt]. The function ∆Et[·] denotes the change of expectation at

time t, i.e. Et[·]− Et−1[·]. The variables θ, r, e and f stand for log book-to-market ratio, log excess return,

log return on equity and log interest rate, respectively. The coefficient ρ and the term κ stand for discount

factor and approximation, respectively. Therefore, the returns are decomposed into two components, i.e.

cash flow news Ncf and discount rate news Nr. In addition, this return decomposition implies the following

variance decomposition simultaneously.

Var [rt − Et−1 [rt]] = Var [Ncf,t] + Var [Nr,t]− 2Cov [Ncf,t, Nr,t] .
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In practice, one is able to decompose the returns by assuming VAR process for state variables. In particular,

we assume the first-order VAR process rather than others.

zt = Γzt−1 + ut.

The first element of the state vector z is r, i.e. z =

(
r · · ·

)>
. This linear process implies the recursive

structure hence the change of expectation can be obtained as well.

∆Et [zt+j ] = Γjut.

Both discount rate news and cash flow news can be obtained by combining the change of expectation with

the news decomposition above.

Nr,t =∆Et

 ∞∑
j=1

ρjrt+j


=∆Et

 ∞∑
j=1

ρje1>Γjut


=e1>(I− ρΓ)−1ρΓut

=λ>ut,

Ncf,t =rt − Et−1 [rt] +Nr,t

=e1>ut + λ>ut

=(e1 + λ)>ut.

The vector e1 contains 1 only for the first element and 0 for the others, i.e. e1 =

(
1 0>

)>
. By defining

Σ as the variance of ut, i.e. Σ = E
[
utu

>
t

]
, one can rewrite the variance decomposition above.

Var [Nr,t] =λ>Γλ

Var [Ncf,t] =(e1 + λ)>Σ(e1 + λ)

Cov [Nr,t, Ncf,t] =λ>Σ(e1 + λ).

The coefficient matrix Γ and the variance matrix Σ are estimated using panel data. In order to consider

the time effect in the state vector z, we demean the observations cross-section by cross-section and estimate

both Γ and Σ using WLS with the weight 1/Nt following Fama and MacBeth (1973). Nt stands for the
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number of firms at time t. In addition, we adopt a time-clustered standard error for both Γ and Σ because

it is robust to the time effect (Petersen, 2009). Following Vuolteenaho (2002) and Callen and Segal (2004),

we employ 0.967 (0.9671/4) as the annual (quarterly) discount factor ρ.

3 EGARCH

Ang et al. (2006) exploit daily data to compute idiosyncratic volatilities. Since the news decomposition

proposed by Vuolteenaho (2002) requires accounting data, neither daily nor monthly news data are available.

In addition, the aforementioned variance decomposition is static so cannot alter traditional idiosyncratic

volatilities. Instead, we apply EGARCH model to estimate news volatilities since many papers studying

idiosyncratic volatilities adopt this model (Fu, 2009; Fink et al., 2012). These papers use monthly data to

calculate EGARCH idiosyncratic volatilities.

Nit − rft =αi + βi (rmt − rft) + siSMBt + hiHMLt + εit

σ2
it = exp

(
ai +

p∑
l=1

bil lnσ2
it−l +

q∑
k=1

cik

[
θi

(
εit−k
σit−k

)
+ γi

(∣∣∣∣ εit−kσit−k

∣∣∣∣−
√

2

π

)])
.

Since volatilities are correlated serially, EGARCH model better reflects the time-varying property. In order to

avoid the look-ahead bias mentioned by Guo et al. (2014), we compute out-of-sample EGARCH idiosyncratic

volatilities recursively. Following above researches, we combine EGARCH model together with Fama–French

model. However, unlike these researches, we only consider the case p = q = 1, i.e. EGARCH(1,1), because

quarterly data provide less available observations than monthly data. Both maximum likelihood and Normal

distribution are employed to estimate this model. The log likelihood function is maximized using TR (trust

region) method in SAS. we set 32,767 (215 − 1) as the maximum number of iterations.

4 Data Description

4.1 Raw data

We obtain all CRSP and Compustat data from WRDS. Firstly, we employ CRSP daily stock file to calculate

monthly (quarterly) idiosyncratic volatilities and CRSP monthly stock file to construct monthly (quarterly)

quintile portfolios sorted on past idiosyncratic volatilities. CRSP daily stock file is from December 31, 1925

to December 31, 2015 and CRSP monthly stock file is from December 1925 to December 2015, respectively.

Secondly, we use both Compustat fundamentals annual and Compustat fundamentals quarterly to attain the

relevant accounting information such as book-to-market ratio and return on equity. Compustat fundamentals
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annual is from January 1950 to November 2016 and Compustat fundamentals quarterly is from January 1961

to November 2016, respectively. Thirdly, we merge CRSP and Compustat data by using the linking table

of CRSP/Compustat merged. Fourthly, we exploit daily and monthly Fama–French factors to apply CAPM

and Fama–French model, which enable to (i) compute an idiosyncratic volatility and (ii) measure the excess

performance of a portfolio after considering risk factors.

4.2 Volatility and news

Firstly, we estimate both monthly and quarterly idiosyncratic volatilities with daily data. In detail, we

regress firm-level excess returns (ri − rf ) on Fama–French factors (rm − rf , SMB, HML) recursively and

adopt thebb sample standard deviation of residuals (

√
V̂ar [εi]). we exclude monthly volatilities estimated

with less than 11 observations and quarterly volatilities estimated with less than 31 observations. CRSP

stocks are sorted on one-month-lagged or one-quarter-lagged volatilities, but excluded if the volatilities are

unavailable. Value-weighted quintile portfolios are constructed and rebalanced each month or each quarter.

Secondly, we estimate both annual and quarterly VAR model with annual and quarterly data, respectively.

For annual data, we only include the observations at time t with (i) a book equity available at t− 1, t− 2,

t−3, (ii) a net income available at t−1, t−2, (iii) a long-term debt available at t−1, t−2, (iv) a December

fiscal-year end month, (v) a market equity more than $10M and (vi) a log book-to-market ratio bigger than

1/100 but smaller than 100. In order to compare the results conveniently, we follow these requirements

imposed by Vuolteenaho (2002) in the annual case. In contrast, we impose only two restrictions in the

quarterly case, i.e. an observation must have (i) a log excess return (r), a log book-to-market ratio (θ)

and a log excess return on equity (e) available at t − 1 and (ii) a December fiscal-year end month. Since

idiosyncratic volatilities only require CRSP data, their availabilities are more sufficient than the availabilities

of news components that require both CRSP and Compustat data. By relaxing the requirements instead,

more returns are able to be decomposed into news components.

Thirdly, we estimate the idiosyncratic volatilities of both discount rate news and cash flow news with the

data above using EGARCH model. In detail, we obtain out-of-sample EGARCH volatilities firm by firm

with all historical data available at that time, but only include the volatilities computed with more than or

equal to 12 quarterly observations (3 years). Since the estimation involves numerical procedures, one cannot

be fully apart from the threat of outliers. Following Fu (2009), we winsorize the smallest and biggest 2.5%

of news volatilities quarter by quarter. Panel A and Panel B of Figure 1 display the distributions of discount

rate and cash flow news idiosyncratic volatilities, respectively.
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5 Main Result

5.1 Idiosyncratic volatility

TABLE 1 HERE

Table 1 shows the month by month (1/0/1) performance of quintile portfolios sorted on lagged idiosyn-

cratic volatilities. The first column is the portfolio with lowest volatility and vice versa. In addition, the

sixth column is the zero cost portfolio formed by selling the most volatile and buying the least volatile.

The first three rows contain sample means, corresponding t-statistics and standard deviations of quintile

portfolios, respectively. While the average return of the least volatile quintile is positive (0.67%/month) and

significant (t-statistic=4.71), that of the most volatile quintile is marginal (0.15%/month) and insignificant

(t-statistic=0.53). The average return of the arbitrage portfolio is positive (0.53%/month) and significant

(t-statistic=2.65). Though this return is smaller than what is reported by Ang et al. (2006) (1.06%/month),

its significance is close enough (Newey–West t-statistic=3.10). Though unreported, the result from matching

subsample is consistent (0.94%/month, Newey–West t-statistic=2.89).

The second four rows and last eight rows include the results from CAPM and Fama–French model,

respectively. While the CAPM α of quintile 1 is positive (0.13%/month) and significant (t-statistic=3.97),

that of quintile 5 is negative (=0.74%/month) and significant (t-statistic==4.69). The CAPM α of the 1=5

portfolio is positive (0.87%/month) and significant (t-statistic=4.84). Since the CAPM β of this portfolio

is negative (=0.53), the abnormal performance cannot be justified by the market risk. Furthermore, this

pattern is obvious with Fama–French model as well. The Fama–French model α of the arbitrage portfolio

is positive (0.97%/month) and significant (t-statistic=6.90). Risk loadings are also negative (β==0.31,

s==1.19) or insignificant (t(h)-statistic=0.59) so cannot justify the abnormal return. In a nutshell, this

confirms the consistency of the results and implies the existence of the idiosyncratic volatility anomaly.

TABLE 2 HERE

Table 2 shows the performance of quintile portfolios quarter by quarter (3/0/3) instead. The format of

this table is identical to that of Table 1. Unlike the case of Table 1, the average return of the 1=5 portfolio

is negative (=0.81%/quarter). However, this average return is insignificant (t-statistic==0.78). In con-

trast, the results from both models indicate that the abnormal return is positive (αCAPM=1.27%/quarter,

αFF=1.17%/quarter) and more significant (t (αCAPM)-statistic=1.45, t (αFF)-statistic=1.61) after control-

ling other factors. Though unreported, this abnormal performance is even more significant with the sub-

sample after 1963 (Ang et al., 2006). With the average return 1.90 percent, both CAPM α and FF α are
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positive (αCAPM=4.19%/quarter, αFF=4.09%/quarter) and significant (t (αCAPM)-statistic=3.51, t (αFF)-

statistic=4.01). The signs of risk loadings are consistent with those in Table 1 and the magnitudes are

bigger than them. In particular, the CAPM β of the quarterly 1=5 portfolio is =0.99 (=1.44 with the

post-1963 subsample), which is about twice bigger than that of the monthly counterpart (=0.54). Likewise,

the coefficients of Fama–French model from quarterly data (β==0.54, s==1.74, h=0.23) are bigger than

those from monthly data (β==0.31, s==1.19, h=0.02). In short, this implies that the idiosyncratic volatility

anomaly is consistent in quarterly data as well.

5.2 News decomposition

TABLE 3 HERE

Table 3 displays the descriptive statistics computed from annual data. In order to compare the results

conveniently, we record both all sample statistics and subsample counterparts. In detail, all sample is

from 1954 to 2015 with 58,554 firm-years and subsample is from 1954 to 1996 with 33,302 firm-years. As

aforementioned, observations are demeaned cross-section by cross-section to address time fixed effects. Panel

A and Panel B exhibit the descriptive statistics obtained from all sample raw data and all sample demeaned

data, respectively. Panel C and Panel D present the descriptive statistics calculated from subsample raw

data and subsample demeaned data, respectively. All statistics are calculated from pooled data. For three

variables r (log excess return), θ (log book-to-market ratio) and e (log excess return on equity), we estimate

sample mean, standard deviation, maximum, minimum and three quartiles. While the demeaning reduces

the variations in r and θ significantly (0.48 versus 0.44, 0.94 versus 0.91), the reduced portion of the variation

in e is marginal (0.41 versus 0.41).

TABLE 4 HERE

Table 4 contains the estimates of annual VAR models. In depth, we analyze both all sample (1954–2015)

and subsample (1954–1996). Panel A and Panel B report the results obtained from all sample. Panel C

and Panel D present the results attained from subsample. The first 3-by-3 square of Panel A displays the

VAR(1) coefficient matrix. Firstly, three coefficients in the first row suggest the positive and significant

relation between log return (rit) and three state variables lagged one year (rit−1, θit−1, eit−1). (1,1), (1,2),

and (1,3) coefficients are respectively 0.0543, 0.0519, and 0.0660 and all significant. These coefficients are

consistent with a momentum effect (Carhart, 1997), a high book-to-market effect (Fama and French, 1992),

and a high profitability effect (Fama and French, 2016), respectively. Secondly, the (2,2) and (3,3) coefficients

imply the positive autocorrelation of log book-to-market ratio and log return on equity. The second 3-by-3
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square of Panel A demonstrates the variance matrix. Log return shocks are negatively correlated to log

book-to-market ratio shocks, but positively correlated to log return on equity. Panel B shows the result of

static news variance decomposition. The ratio of discount rate news variance to cash flow news variance

is about 11.35% (0.0157/0.1383). This result indicates that firm-level returns are mainly driven not by

discount rate news but by cash flow news. The format of Panel C and Panel D is identical to that of Panel

A and Panel B. By and large, the sign and significance of the estimates are comparable. Only the (1,3) and

(3,2) coefficients have different results (0.0660 versus =0.0104, 0.0133 versus =0.0049). The ratio between

discount rate news variance and cash flow news variance is about 9.91% (0.0077/0.0777). In summary, these

findings are consistent with those of Vuolteenaho (2002) and Callen and Segal (2004).

TABLE 5 HERE

Table 5 exhibits the descriptive statistics computed from quarterly data instead. The format of this table

is identical to that of Table 3. The sample is from March 1972 to December 2015 (176 quarters) with 235,704

firm-quarters. To address time fixed effects, observations are demeaned cross-section by cross-section. Panel

A displays the descriptive statistics calculated from raw data and Panel B demonstrates the descriptive

statistics obtained from demeaned data, respectively. All statistics are calculated from pooled data. We

estimate sample mean, standard deviation, maximum, minimum and three quartiles for three variables r, θ

and e. Similar to the case of Table 3, the demeaning reduces the variations in r and θ (0.29 versus 0.26, 0.98

versus 0.93), but does not reduce the variation in e (0.18 versus 0.18).

TABLE 6 HERE

Table 6 contains the estimates of quarterly VAR model. Panel A exhibits the estimates of both coefficient

matrix and variance matrix and Panel B displays the result of static news variance decomposition. In

general, the differences are marginal compared to Table 4, and (1,1), (1,2), and (1,3) coefficients still exhibit

momentum, book-to-market, and profitability effects, respectively. In the quarterly VAR model, the (1,1)

and (1,2) coefficients are smaller than the counterparts in the annual VAR model (0.0543 versus 0.0288,

0.0519 versus 0.0084). In contrast, the (1,3) coefficient is bigger than the counterpart in the annual VAR

model (0.0660 versus 0.0975). This is natural since this VAR model requires quarterly returns instead of

annual returns. By and large, both momentum and book-to-market effects are weaker in the short run and

researchers often use a past 11-month return from t − 2 to t − 12 months for a momentum effect and a

book-to-market ratio from t− 1 accounting year. On the other hand, the profitability effect is clearer in the

short run (Hou et al., 2015). Panel B shows the result of static news variance decomposition. The ratio of

discount rate news variance to cash flow news variance is about 7.60% (0.0040/0.0526), which is smaller than
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the ratio computed using annual data (11.35%) and the ratio from the subsample (9.91%). Again, this result

emphasizes the role of cash flow news in determining quarterly returns. Overall, this result is consistent with

whawt Table 4 exhibits and justifies the use of quarterly data in decomposing quarterly firm-level returns.

5.3 News volatility

TABLE 7 HERE

Table 7 shows the performance of quarterly decile portfolios sorted on EGARCH idiosyncratic volatilities

of discount rate news. The format of this table is identical to that of Table 2. The average return of the

1=10 portfolio is negative (=0.04%/quarter) but insignificant (t-statistic==0.06). Likewise, both CAPM

and Fama–French alphas of this portfolio are positive (αCAPM=0.58%/quarter, αFF=0.09%/quarter) but

insignificant (t (αCAPM)-statistic=0.88, t (αFF)-statistic=0.14). Like the case of Table 2, both CAPM and

Fama–French betas are negative (βCAPM==0.32, βFF==0.26) and significant (t (βCAPM)-statistic==4.20,

t (βFF)-statistic==3.03). Unlike the case of Table 2, however, the HML coefficient instead the SMB

coefficient is positive (0.36) and significant (t-statistic=3.27). This implies that the stocks in the first

portfolio and those in the fifth counterpart are not much different in terms of size. This is not a surprising

result as we impose more restrictions here. In contrast, traditional idiosyncratic volatility portfolios impose

relatively less restrictions, so smaller firms are included more. In short, this indicates the difference between

the portfolios sorted on traditional idiosyncratic volatilities and the portfolios sorted on discount rate news

idiosyncratic volatilities.

TABLE 8 HERE

Table 8 shows the performance of quarterly decile portfolios sorted on EGARCH idiosyncratic volatilities

of cash flow news. The format of this table is identical to that of Table 2. The average return of the zero

investment portfolio is positive (0.76%/quarter) but insignificant (t-statistic=1.08). However, both CAPM

and Fama–French alphas of this portfolio are positive (αCAPM=1.52%/quarter, αFF=1.21%/quarter) and sig-

nificant (t (αCAPM)-statistic=2.24, t (αFF)-statistic=1.81). Like the case of Table 2, both CAPM and Fama–

French betas are negative (βCAPM==0.39, βFF==0.23) and significant (t (βCAPM)-statistic==4.95, t (βFF)-

statistic==2.69). The sign and significance of Fama–French coefficients are identical as well. The SMB

coefficient is negative (=0.46, t-statistic==3.18) and the HML coefficient is positive (0.30, t-statistic=2.74).

Unlike the case of Table 7, the portfolios sorted on cash flow news idiosyncratic volatilities are compara-

ble with those sorted on discount rate news idiosyncratic volatilities. Therefore, one can confirm that the

behavior of the arbitrage portfolio using cash flow news idiosyncratic volatilities is similar to that of the
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arbitrage portfolio using traditional idiosyncratic volatilities, while the behavior of the arbitrage portfolio

using discount rate news idiosyncratic volatilities is different from the other two.

This result suggests that not all idiosyncratic volatilities are priced in the cross-section, and that investors

price cash flow news idiosyncratic volatilities and discount rate news idiosyncratic volatilities differently due

to some reasons such as skewness preference and distress preference. According to the result, investors

tend to underprice less volatile stocks but overprice more volatile counterparts in terms of either traditional

idiosyncratic volatilities or cash flow news idiosyncratic volatilities. In contrast, such a tendency dissapears

when one introduces discount rate news idiosyncratic volatilities instead.

6 Conclusion

Throughout this paper, we revisit the volatility anomaly of Ang et al. (2006) using quarterly data and

compare the relative importance of discount rate and cash flow news volatilities in driving the idiosyncratic

volatility puzzle based on the accounting-based approach proposed by Vuolteenaho (2002). There have been

many suggestions concerning why investors price the idiosyncratic volatilities in a counterintuitive way in

the cross-section, but researchers have seldom paid attention to the respective role of cash flow and discount

rate volatilities in explaining the anomaly.

We first estimate monthly and quarterly idiosyncratic volatilities using daily data and construct quintile

portfolios sorted on these volatilities. The arbitrage portfolio here collects 1.3 percent (1.2 percent) alpha

returns per quarter on average after considering the market factor (Fama–French factors). The result shows

that the anomaly is consistent in both monthly and quarterly data. Then we second estimate annual and

quarterly VAR models to decompose firm-level stock returns into discount rate and cash flow shocks. Overall,

the estimates from annual and quarterly data are consistent with each other and suggest that cash flow shocks

rather than discount rate counterparts play a more important role in driving returns.

To see if both cash flow and discount rate idiosyncratic volatilities are priced, we compute these volatilities

using EGARCH on a quarterly basis and investigate the cross-section of returns following Fu (2009). We

create two decile portfolios sorted on discount rate and cash flow news volatilities. The average return of

the 1=10 portfolio from discount rate volatilities is insignificant, but the matching portfolio from cash flow

volatilities acquires about 1.5 percent (1.2 percent) alpha returns per quarter on average after controlling

the market factor (Fama–French factors). These findings indicate that cash flow shocks rather than discount

rate counterparts drive the volatility anomaly. In other words, investors do not equally value cash flow and

discount rate idiosyncratic volatilities, but cherry-pick the former and overvalue them due to some reasons.

Skewness preference partly vindicates this tendency. If cash flow shocks are more skewed then discount
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rate counterparts, then cash flow idiosyncratic volatilities will exhibit some information about how much

returns are skewed, while discount rate idiosyncratic volatilities will not. Another possible explanation

regarding the volatility anomaly is distress preference. Because overcoming financial distress is a positive

signal, investors tend to consider stocks under distress as unscratched lottery tickets and correspondingly

overvalue them. Further discussions and investigations will be worthwhile as the volatility anomaly is evident

enough, while economic theories backing the anomaly are relatively weaker yet.
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Table 1. Monthly idiosyncratic volatility-sorted portfolio

This table reports the performance of monthly idiosyncratic volatility-sorted quintile portfolios. We construct these
quintile portfolios by using lagged monthly idiosyncratic volatilities. The volatilities are estimated from daily returns
and Fama–French model, i.e.

ri − rf = αi + βi (rm − rf ) + siSMB + hiHML+ εi.

For notational convenience, we omit time subscripts. We estimate
√

Var [εi] for all firms month by month and con-
struct quintile portfolios recursively (1/0/1). Idiosyncratic volatilities computed with less than 11 daily observations
are excluded. The sample is from December 31, 1925 to December 31, 2015. 5 portfolios are from August 1926 to
December 2015 (1,073 months). The first row displays quintiles column by column. The last column is the zero
investment portfolio (i.e. constructed by buying the first and selling the fifth). The second partition include sam-
ple means and standard deviations. The third and fourth partitions contain both CAPM and Fama–French model
estimates, respectively. Corresponding t-statistics are reported by using round brackets.

Quintile 1 2 3 4 5 1=5

Mean 0.0067 0.0071 0.0076 0.0052 0.0015 0.0053
(4.7129) (3.8419) (3.4983) (2.1295) (0.5280) (2.6515)

St. dev. 0.0466 0.0606 0.0715 0.0804 0.0900 0.0648

CAPM α 0.0013 0.0000 =0.0006 =0.0036 =0.0074 0.0087
(3.9674) (0.0032) (=1.1564) (=3.6459) (=4.6909) (4.8436)

CAPM β 0.8430 1.1020 1.2830 1.3670 1.3720 =0.5294
(143.2530) (159.6910) (125.0570) (75.2020) (47.1820) (=16.0576)

FF α 0.0013 =0.0004 =0.0013 =0.0043 =0.0084 0.0097
(4.5894) (=1.2072) (=2.7654) (=5.8466) (=6.6785) (6.9000)

FF β 0.8660 1.0810 1.2070 1.2290 1.1730 =0.3074
(159.4050) (158.7280) (131.4350) (84.1420) (47.0550) (=11.0391)

FF s =0.1687 =0.0092 0.2923 0.7003 1.0214 =1.1902
(=18.9814) (=0.8220) (19.4516) (29.2910) (25.0326) (=26.1115)

FF h 0.0550 0.1466 0.1306 0.0309 0.0308 0.0243
(6.8963) (14.6702) (9.6842) (1.4401) (0.8399) (0.5932)
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Table 2. Quarterly idiosyncratic volatility-sorted portfolio

This table reports the performance of quarterly idiosyncratic volatility-sorted quintile portfolios. We construct these
quintile portfolios by using lagged quarterly idiosyncratic volatilities. The volatilities are estimated from daily returns
and Fama–French model, i.e.

ri − rf = αi + βi (rm − rf ) + siSMB + hiHML+ εi.

For notational convenience, we omit time subscripts. We estimate
√

Var [εi] for all firms quarter by quarter and
construct quintile portfolios recursively (3/0/3). Idiosyncratic volatilities computed with less than 31 daily observa-
tions are excluded. The sample is from December 31, 1925 to December 31, 2015. 5 portfolios are from September
1926 to December 2015 (358 quarters). The first row displays quintiles column by column. The last column is the
zero investment portfolio (i.e. constructed by buying the first and selling the fifth). The second partition include
sample means and standard deviations. The third and fourth partitions contain both CAPM and Fama–French model
estimates, respectively. Corresponding t-statistics are reported by using round brackets.

Quintile 1 2 3 4 5 1=5

Mean 0.0204 0.0227 0.0273 0.0248 0.0285 =0.0081
(4.1454) (3.0555) (2.9126) (2.3107) (2.1512) (=0.7767)

St. dev. 0.0933 0.1406 0.1773 0.2029 0.2507 0.1965

CAPM α 0.0034 =0.0030 =0.0047 =0.0105 =0.0093 0.0127
(3.2583) (=1.9531) (=1.8782) (=2.6013) (=1.1681) (1.4525)

CAPM β 0.8170 1.2314 1.5314 1.6875 1.8102 =0.9933
(89.8724) (90.0240) (69.3692) (47.5046) (25.7498) (=12.9130)

FF α 0.0029 =0.0049 =0.0062 =0.0110 =0.0087 0.0117
(3.1553) (=3.8043) (=3.0571) (=3.5278) (=1.3149) (1.6066)

FF β 0.8478 1.1589 1.3680 1.4232 1.3849 =0.5372
(86.6026) (86.1318) (63.7162) (43.4302) (19.8181) (=7.0312)

FF s =0.1495 0.0970 0.4530 0.9106 1.5917 =1.7412
(=8.6259) (4.0700) (11.9160) (15.6914) (12.8622) (=12.8691)

FF h 0.0617 0.2203 0.1609 0.0053 =0.1721 0.2337
(4.6777) (12.1592) (5.5649) (0.1199) (=1.8281) (2.2713)
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Table 3. Annual sample descriptive statistic

This table displays the descriptive statistics obtained from annual data. We report both all sample and subsample
statistics for convenient comparison. All sample is from 1954 to 2015 (58,554 firm-years) and subsample is from 1954
to 1996 (33,302 firm-years). The variables are demeaned each year to address time fixed effects, i.e.

Xdemeaned
it = Xraw

it −
Nt∑
j=1

Xjt/Nt.

The subscripts i and t stand for firm and year, respectively. The variables r, θ and e are log excess return, log
book-to-market ratio and log excess return on equity, respectively. Panel A–D contain the descriptive statistics of
raw data from all sample, those of demeaned data from all sample, those of raw data from subsample and those of
demeaned data from subsample, respectively. To be included in the data, an observation must have (i) a book equity
available at t − 1, t − 2, t − 3, (ii) a net income available at t − 1, t − 2, (iii) a long-term debt available at t − 1,
t − 2, (iv) a December fiscal-year end month, (v) a market equity more than $10M and (vi) a log book-to-market
ratio bigger than 1/100 but smaller than 100.

Variable Mean St. dev. Minimum 1Q Median 3Q Maximum

Panel A. All sample raw data

rrawit =0.0076 0.4831 =3.9068 =0.2297 0.0284 0.2568 3.3388
θrawit =0.3640 0.9402 =4.6024 =0.8689 =0.3232 0.1679 4.5943
erawit =0.0490 0.4132 =2.3026 =0.0426 0.0328 0.0907 4.3625

Panel B. All sample demeaned data

rdemeaned
it 0 0.4435 =3.8314 =0.2047 0.0181 0.2362 3.1295

θdemeaned
it 0 0.9061 =4.5725 =0.4605 0.0457 0.4633 5.1649

edemeaned
it 0 0.4078 =2.3617 =0.0260 0.0582 0.1549 4.3760

Panel C. Subsample raw data

rrawit 0.0349 0.4071 =3.2730 =0.1755 0.0409 0.2524 3.3388
θrawit =0.2778 0.8149 =4.5156 =0.7087 =0.1926 0.2383 4.5803
erawit =0.0032 0.2940 =2.3026 =0.0180 0.0364 0.0843 4.3625

Panel D. Subsample demeaned data

rdemeaned
it 0 0.3646 =3.1734 =0.1904 0.0024 0.1926 3.1295

θdemeaned
it 0 0.7684 =4.1723 =0.3815 0.0804 0.4546 5.0759

edemeaned
it 0 0.2907 =2.3617 =0.0292 0.0266 0.0923 4.3760
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Table 4. Annual VAR model estimate

Panel A and Panel C of this table report the estimates of annual firm-level VAR model, i.e.

zit =Γzit−1 + uit

Σ =E
[
uitu

>
it

]
.

Subscripts i and t stand for firm and year, respectively. Above zit is the vector of three state variables rit, θit and
eit, which are log excess return, log book-to-market ratio and log excess return on equity. To address time fixed
effects, all state variables are demeaned year by year. We report both all sample and subsample estimates in Panel
A and Panel C. All sample is from 1954 to 2015 (58,554 firm-years) and subsample is from 1954 to 1996 (33,302
firm-years). We estimate both Γ and Σ by using WLS with the weight 1/Nt. The first and second 3-by-3 squares
include the estimates of Γ and Σ, respectively. Corresponding t-statistics are computed with time-clustered standard
errors (Petersen, 2009) and reported by using round brackets.

Panel A. All sample VAR model

Γ Σ

rit−1 θit−1 eit−1 rit θit eit

rit 0.0543 0.0519 0.0660 rit 0.1516 =0.1242 0.0225
(3.1081) (6.2696) (2.9213) (11.5505) (=11.5470) (8.2013)

θit 0.1412 0.8278 0.0633 θit =0.1242 0.2043 0.0147
(7.3666) (59.7793) (2.4752) (=11.5470) (11.2931) (4.9005)

eit 0.1178 0.0133 0.4993 eit 0.0225 0.0147 0.0775
(7.1741) (2.3366) (19.5019) (8.2013) (4.9005) (8.4908)

Panel B. All sample variance decomposition

Var [Nr] Var [Ncf ] −2 × Cov [Nr, Ncf ] Corr [Nr, Ncf ]

0.0157 0.1383 =0.0024 0.0259
[0.1035] [0.9124] [=0.0159]

Panel C. Subsample VAR model

Γ Σ

rit−1 θit−1 eit−1 rit θit eit

rit 0.0434 0.0567 =0.0104 rit 0.1007 =0.0844 0.0121
(2.5414) (5.4237) (=0.4520) (10.6608) (=10.3151) (6.9688)

θit 0.1147 0.8150 0.0921 θit =0.0844 0.1373 0.0073
(5.1928) (35.4021) (2.6917) (=10.3151) (8.6025) (2.6708)

eit 0.0868 =0.0049 0.3846 eit 0.0121 0.0073 0.0388
(4.1457) (=0.6027) (7.5094) (6.9688) (2.6708) (5.8756)

Panel D. Subsample variance decomposition

Var [Nr] Var [Ncf ] −2 × Cov [Nr, Ncf ] Corr [Nr, Ncf ]

0.0077 0.0777 =0.0153 =0.3117
[0.0769] [0.7713] [=0.1518]
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Table 5. Quarterly sample descriptive statistic

This table displays the descriptive statistics obtained from quarterly data. The sample is from March 1972 to
December 2015 (176 quarters, 235,704 firm-quarters). The variables are demeaned each quarter to address time fixed
effects, i.e.

Xdemeaned
it = Xraw

it −
Nt∑
j=1

Xjt/Nt.

The subscripts i and t stand for firm and quarter, respectively. The variables r, θ and e are log excess return, log
book-to-market ratio and log excess return on equity, respectively. Panel A, B contain the descriptive statistics of
raw data and those of demeaned data, respectively. In order for an observation to be included in the data, here we
impose two requirements, i.e. an observation must have (i) r, θ and e available at t−1 and (ii) a December fiscal-year
end month.

Variable Mean St. dev. Minimum 1Q Median 3Q Maximum

Panel A. Raw data

rrawit =0.0196 0.2938 =4.6771 =0.1353 0.0021 0.1242 2.5846
θrawit =0.3422 0.9777 =8.4217 =0.8697 =0.3024 0.2052 9.8809
erawit =0.0228 0.1842 =2.3026 =0.0146 0.0075 0.0233 4.9245

Panel B. Demeaned data

rdemeaned
it 0 0.2649 =4.3816 =0.1113 0.0082 0.1280 2.5366

θdemeaned
it 0 0.9259 =8.3662 =0.4717 0.0431 0.4796 10.5509

edemeaned
it 0 0.1826 =2.3052 =0.0046 0.0223 0.0511 4.9665
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Table 6. Quarterly VAR model estimate

Panel A of this table reports the estimates of annual firm-level VAR model, i.e.

zit = Γzit−1 + uit.

Subscripts i and t stand for firm and quarter, respectively. Above zit is the vector of three state variables rit,
θit and eit, which are log excess return, log book-to-market ratio and log excess return on equity, respectively, i.e.

zit =
(
rit θit eit

)>
. To address time fixed effects, all state variables are demeaned quarter by quarter. The sample

is from March 1972 to December 2015 (176 quarters, 235,704 firm-quarters). We estimate both Γ and Σ by using
WLS with the weight 1/Nt. The first 3-by-3 square includes the estimate of Γ. The second 3-by-3 square contains
the estimate of Σ. Corresponding t-statistics are computed with time-clustered standard errors (Petersen, 2009) and
reported by using round brackets. Panel B of this table states the variance decomposition, i.e.

Var [Nr] =λ>Σλ

Var [Ncf ] =(e1 + λ)>Σ(e1 + λ)

Cov [Nr, Ncf ] =λ>Σ(e1 + λ).

Note that e1 =
(
1 0>

)>
and λ = ρΓ>

(
(I − ρΓ)−1

)>
e1. For notational convenience, we omit time subscripts.

Nr and Ncf stand for discount rate news and cash flow news, respectively. The first row contains the estimates
of Var [Nr], Var [Ncf ], −2 × Cov [Nr, Ncf ] and Corr [Nr, Ncf ]. The ratio of each component to the total variance is
reported in the second row with a square bracket.

Panel A. VAR model

Γ Σ

rit−1 θit−1 eit−1 rit θit eit

rit 0.0288 0.0084 0.0975 rit 0.0605 =0.0557 0.0046
(1.8182) (2.8660) (6.6187) (17.6341) (=17.1722) (9.0500)

θit 0.0421 0.9525 0.0426 θit =0.0557 0.1003 0.0089
(2.4363) (245.0869) (1.8873) (=17.1722) (19.8868) (11.0361)

eit 0.0648 0.0057 0.4597 eit 0.0046 0.0089 0.0233
(10.2844) (3.4727) (21.6617) (9.0500) (11.0361) (15.5855)

Panel B. Variance decomposition

Var [Nr] Var [Ncf ] −2 × Cov [Nr, Ncf ] Corr [Nr, Ncf ]

0.0040 0.0526 0.0039 =0.1331
[0.0657] [0.8706] [0.0637]
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Figure 1. Distributions of discount rate and cash flow news volatilities

This figure displays the distribution of discount rate news volatilities (σit [Nr,it]) and that of cash flow news volatil-
ities (σit [Ncf,it]). We first estimate the news data using a panel VAR model with accounting variables following
Vuolteenaho (2002) and second estimate the volatilities using an EGARCH model with Fama–French factors fol-
lowing Fu (2009). For each distribution, we estimate a shape parameter k and a scale parameter θ of a gamma
distribution using the following probability density function.

fX(x) =
1

Γ(x)θk
xk−1 exp

(
−x
θ

)
1R+(x).

The mean and variance of the distribution are defined as kθ and kθ2, respectively. Idiosyncratic volatilities computed
with less than 12 quarterly observations are excluded. The smallest and biggest 2.5% of respective news volatilities
are winsorized quarter by quarter to remedy potential measurement errors from intense numerical processes. The
sample is from December 1974 to December 2015 (165 quarters, 152,099 firm-quarters).

Panel A. Discount rate news volatilities Panel B. Cash flow news volatilities

(k̂ = 1.7096, θ̂ = 0.0181) (k̂ = 1.9618, θ̂ = 0.0735)
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