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Abstract

The market of electricity derivatives has experienced a substantial growth in the volume of trade
and the diversity of available products over the past few years. This has led to a rich data envi-
ronment that requests more sophisticated and accurate modelling approaches for electricity spot
prices. This paper deals with the analysis of continuous-time stochastic volatility jump-diffusion
processes in the context of pricing of futures contracts written on electricity spots. We formu-
late a model, which aims to capture the most prominent characteristics and stylised facts of the
electricity spot market including mean reversion, seasonality, extreme volatility and spikes. The
proposed modelling framework extends the already existing models by incorporating mean rever-
sion, stochastic volatility and jumps in both, the underlying spot price process and its volatility.
The model parameters are estimated using the Markov Chain Monte Carlo (MCMC) technique for
the Australian electricity market, which highly liquid and can be analysed using pricing appli-
cations. Using the market price of risk estimated from the futures market, we compute futures
prices in a closed or semi-closed form and demonstrate that the model fits data well in-sample and
out-of-sample.
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1. Introduction

Energy derivatives market has increased substantially in the recent years, resulting in significant
increase of trading volumes and large variety of offered products. Models for dynamics of elec-
tricity spot prices lie at the heart of derivatives pricing and risk management. Accurate valuation
energy derivatives contracts and reliable risk management strategies rely heavily on the specified
modelling framework, which must capture the most important characteristics and stylised facts
of electricity spot prices. These include mean reversion (see Schwartz (1997) and Weron (2006)),
which is much stronger compared to financial assets or other commodities; price spikes (Kamin-
ski (1999) and Weron et al. (2004)), which are short-lived phenomena related to non-storability of
electricity, inelasticity of supply and demand, generator capacity constraints and outages; extreme
volatility whereby small changes in load or generation can cause large changes in price; and sea-
sonality (Pilipovic (1997) and Kaminski (1999)), which is attributed to seasonal patterns observed
in electricity prices during the course of a day, week and year.

In order to model the above mentioned characteristics, the literature typically considers the
regime-switching models (Huisman and Mahieu, 2003; Haldrup and Nielsen, 2006; Bierbrauer
et al,, 2007; Janczura and Weron, 2010), or diffusion models where some authors add jumps,
stochastic volatility and stochastic equilibrium level as additional risk factors to account for spikes
and mean reversion (Cartea and Figueroa, 2005; Geman and Roncoroni, 2006; Kluge et al., 2009).
Furthermore, several research works consider additional exogenous variables such as weather or
electricity demand (Mount et al., 2006; Huisman, 2008; Kanamura and Ohashi, 2008) which might
be helpful to better capture the spiky behaviour of the spot prices. Although jump-diffusion and
regime-switching models offer the best alternatives, there is always a trade-off between model par-
simony and adequacy in capturing the unique characteristics of electricity prices. If the underlying
price process is chosen inappropriately, it will fail to capture the main characteristics of electricity
prices, leading to unreliable results. On the other hand, if the model is too complex, the computa-

tional burden will prevent its on-line use in trading departments.

The objective of this paper is to extend modelling frameworks proposed in the literature by
means of incorporating several factors that have not been considered jointly in the existing liter-
ature. Ornstein-Uhlenbeck type of model which accounts for mean reversion of prices has been
introduced in Schwartz (1997), and Lucia and Schwartz (2002b) extend the range of these models
to the two-factor models which incorporate a deterministic seasonal component. Although these
models for the spot price dynamics capture mean reversion in electricity prices, they fail to account
for price spikes. A natural extension is to incorporate a jump component, which was first intro-
duced in Merton (2001) to model equity dynamics, has first appeared in Cartea and Figueroa (2005)
in relation to electricity spot price modelling. The authors present model which combines mean

reversion, jumps and seasonality, and calculate price of the forward contracts in a closed form.

To our knowledge, none of the existing models for electricity spot prices consider all four risk

factors simultaneously: mean reversion, jumps, seasonal component and stochastic volatility. Al-
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though mean-reverting price process with stochastic volatility and jumps have been proposed in
various papers with financial assets as underlying (see (Jacquier et al., 2004; Pan, 2002; Bakshi et al.,

1997; Chernov et al., 2003)), none of the papers considers electricity spot prices as underlying assets.

The main contribution of the present paper is twofold. Firstly, we present a model that captures
the most important characteristics of electricity spot prices such as mean reversion, extreme volatil-
ity, jumps and seasonality. Thereby, the most general model we consider is the mean-reversing
model with seasonality, stochastic volatility and jumps. We compare this model to its less heavily
parameterised counterparts, namely, the mean-reversing model with seasonality, stochastic volatil-
ity without jumps; as well as the model with deterministic volatility with or without jumps. The
parameters from the model specifications are estimated using Markov Chain Monte Carlo (MCMC)
technique, applied to the electricity spot prices in the Australian electricity market. Secondly, using
market price of risk estimated from electricity futures, we calculate an expression for the futures
prices in the closed form and show that the model fits well in-samples, as well as when dealing
with prediction of futures prices.

The paper is organized as follows. Section 2 considers different model specifications for mod-
eling electricity spot price dynamics and derives closed form formula for futures prices. Section 3
discusses the MCMC estimation approach. Section 4 presents the diagnostic tools for quantification
of the model performance. Our empirical results using data from the Australian electricity markets

are presented in Section 5. Finally, Section 6 summarizes the findings.

2. Model Specifications

Let & = {&;t > 0} denotes the electricity spot price that can be decomposed into two parts
as &y = U; - Sy, where U; and S; are deterministic and stochastic components of the spot price,
respectively. In this paper we concentrate on quarterly nearly expiration futures written on the
average spot price of electricity over extended periods of time. Specifically, we consider futures
contacts with expiration on March 31, June 30, September 30 and December 31 (refer to Section

5.1). The value at time ¢ of the futures contract maturing at time T can be computed as

_ 1 t _ T _ 1 t T
Ft(ﬁt/T> = T{Zd‘s‘f‘ Z ]E;Q[d's]} = T{ZUS'SS+ Z us]E(tQ[Ss] ’ (2-1)
s=1 s=t+1 s=1 s=t+1
where the expected value is computed under the risk-neutral measure Q. Thus, the futures price
is given by the the weighted combination of realised spot prices up to time ¢, and the the expected

spots from t + 1 to maturity, T, given the information up to time t.

In this section we discuss different model specifications for modelling the stochastic component
S¢ of the electricity spot price dynamics. These include mean-reverting models with determinis-
tic volatility and with or without jumps, as well as models with stochastic volatility, again with

or without jumps. For each of the model specifications we derive the closed form formula for



expectations, EQ[S].

2.1. Mean-Reverting Model with Deterministic Volatility

We assume that under the physical measure IP, stochastic component S; of the electricity spot

price follows the following stochastic differential equation (SDE):
dS; = a(Sy)Sdt + oS dW?, 2.2)

where a(S;) is a drift function and dW? is standard Brownian motion. Applying It6 lemma to

X = log(S¢), we obtain
dX; = (aX (X¢) — %(72) dt + cdW¥, (2.3)

where a¥(X;) = a(eXt) and dWX = dW?. Since the purpose of our empirical analysis is to price

futures contracts we assume that aX(Xt) is a mean-reverting processes of the form
a*(Xt) = n(p = Xu), (2:4)

where y is a long-run mean of X; and 7 is a speed of mean reversion. Thus, under the physical

measure [P the dynamics of X; reads

X, = (17("” —X;) — % 2) dt + cdWX = (i — Xy)dt + cdW, (2.5)
where
i (2.6)

Since electricity is not a storable commodity, the risk-neutral hedging argument does not apply.
In this case, when rewriting the price process under the risk neutral measure, it does not necessarily
hold that the expected return corresponds to the risk-free interest rate, which is the case when the
underlying is a traded asset. In other words, the expected return of S; under the risk-neutral
measure Q may differ from r. With a change of the probability measure the standard Brownian

motion under the risk-neutral measure becomes
AW = dWX + Adt, (2.7)

where A denotes the market price of risk for the electricity price. Thus, the following dynamics for

X; under the risk-neural measure, Q can be obtained:

X, = (;7(]/[ —X;) — %az — aA> dt + ocdWX = 5(ji — X;)dt + cdW, (2.8)

where ji =y — % (%Uz +0/\).



To derive price of a futures contract, we notice that the process described in Eq. (2.8) is an

Ornstein-Uhlenbeck process with a long-run mean i and a speed of mean reversion 7, which has

a solution .
Xr=e X+ (1 —e 1) 4o / e 1(T=9) g X, 2.9)
t
where T = T — t. Thus, under the risk-neutral measure, Q, X7 has a conditional normal distribution
with mean
EQ [X7] = e " X; + ji(1 — e 77) (2.10)
and variance
o2 )
Var2 [X7] = 5(1 —e7 217, 5 > 0. (2.11)

This leads, using the fact that St = exp (Xr) is log-normally distributed, to:

1
ER(Sr] = exp (ER (log(S1)] + 5 Var? log(51)] )
2
= exp <e_’7T10g(St) +a(l—e ) + 40—17(1 - 6_2’77)). (2.12)
Plugging the result in Eq. (2.12) to Eq. (2.1), the price of the futures contract can be established.

2.2. Mean-Reverting Model with Deterministic Volatility and Jumps

In this subsection we incorporate random jumps in the stochastic component of the electricity
spot price process. Specifically, the dynamics of the stochastic component S; under the real-world

measure [P is given by
dSt = a(Sf)Stdt + aStth + Stdpt, (213)

where P; is a jump process modelled via the compensated compound Poisson process defined as

Ni
Pi= Y Ji— Bt (2.14)
k=1

Here, N; denotes a Poisson process with intensity pt, which represents the number of random
jumps in a time interval [0, t]; J; represents k' jump size in a small time interval [t, t + dt] and y is
an average jump size. The arrival of one jump in the next small time interval [t, t + dt] occurs with
probability p; = e~ PBdt, while no jump occurs with probability py = e P. Given that the jump
intensity is relatively small, the probability of having more than one jump during a short period of
time [t, t + dt] is negligible (see Jacquier et al. (2004)), which implies that p; ~ Bdt and py ~ 1 — Bdt.

Thus, the expected number of jumps over dt can be approximated by

EP[dN;] =~ 1Bdt +0(1 — Bdt). (2.15)



Further we denote J; to be the size of a jump occurring in the time interval [t,t + dt]. s are

assumed to be i.i.d. with
log(1+J;) ~ N <‘M§, a§> , (2.16)

where pz and ag denote the mean and the variance of log(1 + J¢), respectively. This implies that
EY [Ji] = uj = exp(pz + 05/2) —1and Var® [J;] = 0’]2 = exp(2u¢ +0§)(exp(0§) —1). Moreover, the
processes J;, dN; and dW; are assumed to be mutually independent. Note that the jump component
P; is modelled as a compensated process in order to keep the expected value of S; unchanged and

to ensure that there is no excess reward for the risk associated with the random jumps.

After applying the It6 formula to X; = log(S;), we obtain the following dynamics under IP:
dXt = <L1X(Xt) — %0’2> dt + O'th —+ dPtX, (217)

where a*(X;) = a(e**) and
dPX =log (1 + Ji) AN; — Bpjdt. (2.18)

Now, assuming as above, that the drift a(X;) corresponds to the one of the mean-reverting processes
aX(Xy) = n(p—Xy), (2.19)

and taking Eq. (2.18) into account, we obtain the following dynamics for X; under IP:

1
Xy = ('7(# —Xi) - 5‘72 - ﬁﬂ]) dt +0dW; +log (1 + J;) dN;

= n(fi — X¢)dt + cdW; +1log (1 + J;) dNt, (2.20)
where , ;
. % My
== 5 — (2.21)
H=Hu 21 "

By applying the same change of the probability measure as in Section 2.1,
dW; = dW; + Adt, (2.22)

under the risk-neutral measure Q we can write

1 ~
X, = (q(y — X)) — oA — 502 — ﬁy;) dt + odW; +log (1 + J¢) dN

= n(fi — X;)dt + cdW; +log (14 J;) ANy, (2.23)
where )
A (2.24)
/| 1



Eq. (2.23) written under Q is an Ornstein-Uhlenbeck process with jumps with a long-run mean

i and a speed of mean reversion #, which has a solution
) T _ T
Xr=e X+ f(l— e ) o / e 1T=5) g1, + / e~ 1T=5) log(1 + J;)dNs, (2.25)
t t

where T = T — t. Since St = exp{ Xt} we obtain

T
St = exp{e T"Xi+hi(l—e ")} exp {0’/ e_”(T_S)dWS}

t

T
X exp {/ e 1T=9) 10g(1 + ]t)dNS} : (2.26)
t

The expectation of the stochastic component under Q is then given by

T
EQ[Sr] = exp {e X +A(1—e )} EQ {exp {O'/t e_”(T_S)dWSH
T
x E2 {exp {/t e 1(T=5) 1og(1 +]t)dNSH : (2.27)

Note that the expression under the first expectation in Eq. (2.27) is log-normally distributed, and

thus,
Q ! o= 418 Lyvar@ (o [ e=10=5) 41k
E; [exp O'/t e dWs = exp E\/art O’/t e AW
2
- exp{z—77 (1—e—2'7f>}. (2.28)

The second expectation in Eq. (2.27) corresponds to

]E? [exp {/TE—U(T—S) log(1 +])dNS}}
t

T
= exp [/t exp { (log(l +uy) — %a%) e (T=s) 4 %(7126—217@—5)} Bds — ,BT} )
(2.29)

as derived in Appendix 7.1. The proof for the general case is derived in Cartea and Figueroa (2005).
Finally, plugging (2.28) and (2.29) into (2.27), we obtain the following expression for the expected

spot price:

N

IE?[ST] = exp (3777 log(St) -+ (1 — e*’iT) + Z—_U(l _ eZﬂT))

L
T
X exp {/t exp { (10g(1 +up) — %U%) e (T=s) 4 %0126—2?7@—5)} Bds — ,BT} _
(2.30)



Note that the first multiplier in (2.30) corresponds to the price of the futures contract under the
mean-reverting specification without jumps discussed in Section 2.1. Plugging the result of Eq.

(2.30) in Eq. (2.1), futures price under mean-reverting model with jumps is derived.

2.3. Mean-Reverting Model with Stochastic Volatility

In contrast to the previous two models with deterministic volatility, we now assume that the
volatility is stochastic. Under the physical measure IP, the SDEs of the underlying stochastic com-

ponent S; of the electricity price, together with the stochastic variance V; are given by:

dS;y = a(Sy, Vi)Sidt + /V,S;dW?
dVi = b(Vy)dt +c(Vy)dw/, (2.31)

where the two Wiener processes are correlated via dW; - dW)” = pdt. After applying Itd’s lemma
to X; = log(S;), we obtain the following dynamics under IP:

X, = (ax(xt,vf) - %Vt> dt + VVidWi*
dVi = b(Vy)dt+c(V;)dWY, (2.32)

where aX (X, Vi) = a(eXt,V}) and dAWX = dW.

We assume that the drift aX(X;, V;) of X; and the drift b(V;) of V; correspond to the ones of the

mean-reverting processes:

a*(Xt, Vi) = (p — X¢) and b(Vy) = x(6 — Vi) (2.33)

Further, we set ¢(V;) = 0,1/V;. Thus, X; is modelled via an Ornstein-Uhlenbeck process with
a long-run mean y and a speed of mean reversion 7. The variance, V;, follows a mean-reverting
process with square-root diffusion as introduced in Cox et al. (1990), where x, 6 and ¢, are positive
constants satisfying the Feller’s condition 2x/02 > 1; x represents the speed of adjustment, 6 is

the long-run mean and oy is the volatility of volatility.

Hence, the model for X; written under the real-world measure IP becomes

2
dVi = x(8— Vy)dt + oo/ VidW/ . (2.34)

1
X, = {q(y —X;) — —Vt} dt +VidW

With a change of the probability measure from the real-world, P, to the risk-neutral, Q, we



obtain

AWX = dWX 4+ AKX (X4, Vy)dt
AW/ = dw) + A} (Vy)dt, (2.35)

where AX(X;, Vi) and A} (V;) are the risk premiums for the log-price and the volatility, respectively.
The following dynamics for Eq. (2.31) under Q can be established:

1 ~
aX; = (aX(Xt, Vi) = 5Ve = A (X, Vt)\/Vt) Xedt + VX d WS

avi = (b(Vi) =AY (V)e(Va) ) dt + (Vi) dWY (2.36)

Following the assumptions in Ait-Sahalia (1996) we assume AX(X;, Vi) = AXy/V; and A} (V;) =
AV\/V; as a market price of risk for the underlying and the volatility, respectively.

Thus under the risk-neutral measure Q, Eq. (2.34) can be written as

iX, — {17(# ~ X)) — Axw} dt + /VidWX

AV = ®(0— Vy)dt + oo/ VidW/, (2.37)
where AX = (AX + 1) and & = x + 0,A" ans § = x+1;9AV'

For evaluation of futures contracts we require knowledge on the distribution of terminal price
St under the risk-neutral probability measure, Q. Since the characteristic function is given by
the Fourier transform of the density function, it can be used to obtain the distribution function.
Fourier inversion approach for option pricing was introduced in Heston (1993), and adopted by
many authors, including Bates (1996), Bakshi and Madan (2000) and Duffie et al. (2000).

The characteristic function of the log-spot price Xt at time T is given by
T(t,T,¢) = EQ [ei4’XT] , (2.38)

where i is the imaginary unit with i> = —1 and ¢ € R is a Fourier parameter.

Thus, the expected spot price can be written using the characteristic function as follows:

T(t, T, —i) = E2[S7] = EQ |XT| = (1, X;, V). (2.39)
t t

Setting parameters from Eq. (2.34) into the fundamental partial differential equation (FPDE)
derived in Appendix 7.2 (refer to Eq. (7.33)), we obtain the following FPDE:

oD x, 190D~ o> 1. 9*®
T = X0 =PV S5 4RO - VT 4 Vi



R 0°d

vz TPy =0 (240)

1
+§agvf
The FPDE in Eq. (2.40) can be transformed into a set of ordinary differential equations (ODEs) with
an exponential guess for ®(-), see Appendix 7.2. For the system of SDEs with two state variables
X¢ and V; as in our case, the guess is exponentially affine:

D(t, Xy, Vi) = exp {ipA(T)Xs + B(1)Vi + C(7)}, (2.41)

where 7 = T — t. Computing corresponding derivatives of Eq. (2.41) and replacing them in Eq.
(2.40), and then collecting terms that contain X;, V; and constants, leads to the following system of
ODEs:

dzzg[) = —ﬂA(T)/
dffff) = —AXipA(T) + %(irp)zAz(r) —&B(T) + %Uz?Bz(T) +p0oipA(T)B(7),
dCEZl(TT) = nuipA(t) + %0B(T). (2.42)

which can be solved subject to boundary conditions A(0) = 1, B(0) = C(0) = 0. The solution of
the first ODE is given by
A7) = exp{—y7, .43)

which leads to a system of two ODEs:

P~ Aipexpl-nt} -+ (i9) exp{~2q7} ~ RB(x) + 203B(0
+ posigexp{—}B(D
dfl(;) = nuipexp{—nt} + *0B(7). (2.44)

For B(7) in Eq. (2.44) we make the standard substitution for Ricatti equations:

D(t) = exp {— / %agB(r)dT}, (2.45)
which implies
___ D@
B(1) = 102D(7) (2.46)

The first equation in Eq. (2.44) becomes

d*D(1)

, dD dD
g~ Poeigexpi—nT} d(T>+” ()

T dt

+ 03(ig)? exp{~2q7}D(x)

~ SV eRipexp{ -y} D(1) =0. (247)
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Following Lutz (2009) who suggest to use work laid out by Heath et al. (1992) and Collin-Dufresne

and Goldstein (2002), we make the substitution v = i¢ exp{—#T}, to arrive at the following second

order homogenous equation of the general form (ax + bz)% + (a1x + bl)g—z + (apx + b))y = 0:

d?’D(y) = dD(v) oo, K 1 [, A%\ 102 B
o G e () iy pm=e ew

For the case when p # £1 and & /% ¢ Z, which appears to be the correct assumption based on our
empirical investigation (refer to Section 5), the solution is given by

Oy
exp {ﬂ( p? -1 —p)'r}

/02 _ /02 _
X [ClM (a, b,—'y%+1> + G U (a, b,—y%l)] ,

see Polyanin and Zaitsev (2003) (p. 225) and Lutz (2009) (p. 71-72). In Eq. (2.49), C; and C; are

integration constants, determined by the boundary condition B(0) = 0, M is the Kummer function
and U is the Tricomi function, respectively, with the arguments

D(7)

(2.49)

(-5 (/P =1-p) -1 :
a =

— and b=1— % (2.50)
p —

With an inverse transformation, we obtain the following solutions for the functions B(7) and C(7)
in Eq. (2.41):

S p-1M(a c(t)% a c(t)&
B(T):C(T)[ 0 —1+2aC2b M(C+1,b+1, (1)) —U(a+1,b+1, (),])]/
o |21 &M(a,b,c(1)%) + U(a,b,c(1) )
(2.51)
) = [e(r) = (O] e+ 20 (1 2
— 21 o 02— 1
_ S M b, T U(a,b, Ty
I
2 o (u,b,c(0)7)+U(a,b,c(O)7)
where
o R %
C2 2M(1+a,1+b,c(0 )#)—(1— p‘;_1> M(a, b, c(0)%)
and
c(t) = —ipexp{—nti\/p* — 1. (2.54)
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Plugging Eq. (2.43), Eq. (2.51) and Eq. (2.52) into Eq. (2.41) leads to the solution for the character-
istic function, which according to Eq. (2.39) for ¢ = —i determines lE‘tQ [St], which is used in Egq.
(2.1) for the computation of the futures price.

2.4. Mean-Reverting Model with Stochastic Volatility and Jumps

We assume that under the physical measure IP, the SDE of S; , the stochastic component of the
electricity spot price, and the SDE of the variance V; are given by

dSt = (Z(St, Vf)Stdt + \/VtStthS + Stdpts
dVi = b(Vy)dt+c(V;)dW) +dpPY, (2.55)

where jump process in underlying spot price P is defined according to Eq. (2.14) as a compensated

compound Poisson process. Jump process in the variance is defined as

Ni
Py =Y J. (2.56)
k=1

Here, N; is the same arrival Poisson process as in the process S;. Further, we assume that the
jump size ]} is exponentially distributed with parameter 7, and the jump size J? of the compound

Poisson process P is distributed normally, conditional on J/, with the following parameters:
1
log(1+JP)JY ~N <10g(1 + 1) = 597 +p]]tV,a]2) , (2.57)

where y; and (7]2 denote the mean jump size and the variance of the jump size, respectively.

With the change of measure

AWP = dW} + A7 (S;, Vi)dt
AW/ = dw) + A} (Vy)dt, (2.58)

where A? (S, V;) and A} (V;) are the risk premiums for the price and the variance processes, respec-
tively, we obtain the following dynamics for Eq. (2.55) under Q:

dS; = a(Si, Vi)Sidt 4+ /ViSidWf + S;dDP?
AV = b(Vy)dt+c(Vy)dW) +dPY, (2.59)

where

i(Sy, Vi) = a(S, Vi) — A7 (St, VOV Ve
b(Vi) = b(Vi) =AY (Vi)e(Va). (2.60)
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After applying Itd formula to X; =

dX;

dVi
where

dWX
dpX

log(S¢), we obtain the following dynamics for X;:

= <a(xt, Vi)dt — %Vt) + Vi dWE 4 dPX

= b(Vy)dt +c(V})dWY +dp/, (2.61)
dWS
dN; {log (S¢(1+)) —log(S¢)} = dN;log (1+ ). (2.62)

Similar to the previous model without jumps, now we assume that the drift @(X;, V) of X; and the

drift b(V;) of V; correspond to the ones of the mean-reverting processes:

a(Xe, Vi) = n(p—Xi)
b(Vy) = x(0—W). (2.63)
Hence, the model written under the risk neutral measure Q becomes:
AV, = x(0 — Vy)dt+ oV VidWY +adpY. (2.64)

Here, again, the two Wiener processes are correlated via dWX - dW) = p - dt. Setting parameters
from Eq. (2.64) into the FPDE in Eq. (7.33) derived in Appendix 7.2, we obtain the FPDE of the
following form:

0P 1 pt]’y+p] 0P 0P
il S ptJt —TJ

?® 1, P 0°P

i) VfaXZ 27 Vg +‘0VtUaX8V

+EQ [BQ [(@(X + %, Vi + 1Y) - (Xt, W)Y =] =0 (2.65)

Again, with an exponential guess from Eq. (2.41), the ODEs for A(7) and B(7) are identical to
The ODE for C(t) changes slightly due to
the adjustment for the jump component. For general case with jumps in the underlying and the
APLJ;‘”) ipe ™" + kOB (T)
J

N (W_ v -
+ AEQ[EQ [explip () + BT}V = I || - &

those in Eq. (2.42) for the case of without jumps.

variance, it becomes

dC(T)
dt

(2.66)
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To solve the expectation in Eq. (2.66), we set
A(t) =exp{—nt} (2.67)
and use Eq. (2.57), so that the jump part in Eq. (2.66) becomes
APEQ {exp {i4>e’77 (log(l +uy) — %0]2 + p;],Y) - %4)20]2@2’” + B(T)]VH — AP,
(2.68)

Since the jump size JV of the compound Poisson process P is exponentially distributed with
parameter -y, Eq. (2.68) becomes

APy exp {ige ™ (log(1+ py) — 207+ py )} ) — dgPofe 27}
7 — ie %0 — B(T)

— A, (2.69)

see Dulffie et al. (2000). The ODE for B(7) is identical to Eq. (2.42) of the stochastic volatility model
without jumps, and the ODE for C(7) becomes

dC(7) ( ury +pg
— Yy RN )
dt U Y =Py
APyexp {ige 1™ (log(1+ ) — 407+ py )} ) — SgPode 217}
vy —ige T — B(1)

) ige 1" + xOB(T)

+ — AP,

(2.70)

3. Markov Chain Monte Carlo Estimation

This section provides a brief overview of Marko Chain Monte Carlo (MCMC) approach used
within the Bayesian analysis for the estimation of model parameters and latent variables. We
describe the mechanics of MCMC estimation and show how to use MCMC methods to compute

the quantities of interest.

3.1. General Principles

The underlying problem setup involves estimation of parameters and latent variables such as
jump times and jump sizes. In a Bayesian context each of the unobserved latent variables is treated
as a parameter to estimate. This leads to a high dimensional posterior distribution which is not a
known distribution. In order to compute the moments of the posterior, we would have to compute
a high dimensional integral, which is not available in a closed form. Therefore, we rely on the
Markov-Chain Monte-Carlo (MCMC) estimation used in Bayesian analysis to infer the distribution
of parameters and latent variables conditional on the observed data. This methodology was in-
troduced in Jacqier et al. (1997, 2004) for modeling equity returns and was shown to outperform
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several competing estimation methods in a simulation study by Andersen et al. (1997).

MCMC generates samples from a given target distribution, in our case p(@®, S|X) - the joint
distribution of the parameter vector ® = (1,1, %,0y,0, 1y, oy, 5,7)T and the state variables § =
{V,Z,]}, given the observed data X. In many continuous-time models, p(®, S|X) is an extremely
complicated, high dimensional distribution which is impossible to sample from directly. However,
MCMC solves this problem by first breaking the joint distribution into its complete set of condi-
tionals, which are of lower dimension and, thus, are easier to sample from. In this manner the
MCMC algorithms attacks the curse of dimensionality that plagues other methods. The theoreti-
cal justification for breaking p(®, S|X) into its complete conditional distributions is given by the
Hammersley-Clifford theorem, see Hammersley and Clifford (1970) and Besag (1974), which states
that under mild regularity conditions, the joint posterior is fully characterized by the complete
conditional posteriors. In our case, the joint posterior p(0®, S|X) is characterized by p(©|S, X) -
the complete conditional posterior of the parameters conditional on the state variables and the
data, and p(S|®, X) - the complete conditional posterior conditional on the parameter vector and
the data. If these distributions cannot be sampled from directly, then the Hammersley-Clifford

theorem can be applied again.

MCMC provides a framework for combining the information in these complete conditional
distributions to generate samples from the target distribution p(0®, S|X). Given two initial values
0 and S, MCMC draws () ~ p(5|@), X) and then @) ~ p(0©|S™), X). Continuing in this
fashion, the algorithm generates a sequence of {S&), ®(8) }5:1' This sequence of random variables
forms a Markov Chain which for a large number of draws G converges to p(©, S|X), the target
distribution. Thus, the principle of breaking up the joint distribution into complete conditional
distributions is combined with the principle of a Markov-Chain which starts with arbitrary starting

values and converges over time to its stationary distribution.

In order to reduce the influence of the starting point in the sampling procedure and to assure
that stationarity is achieved, the general approach is to discard a burn-in period of the first h
iterations. The iterations after the burn-in period provide a representative sample from the joint
posterior, and averaging over the non-discarded iterations provides an estimate for posterior means

of parameters and latent variables.

3.2. Sampling from the Conditional Posterior

To update estimated parameters value in each iteration, MCMC algorithm draws from its con-
ditional posterior distribution conditional on the current values of all other parameters and state
variables. Sampling from the conditional posterior can be implemented by either using Gibbs sam-
pler introduced by Geman and Geman (1974) or the Metropolis-Hasting algorithm, see Metropolis
et al. (1953). Gibbs sampler is applied if the complete conditional distribution that we want to
sample from is known. More precisely, we consider the situation where we want to draw a pa-

rameter ©; from its conditional posterior. In order to obtain the conditional posterior, the Bayes’
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Rule is applied. Hereby all terms that do not involve ®; can be ignored, since they are absorbed
into the constant, which does not have to be calculated explicitly. The conditional parameter pos-
terior P(@i|®\i/ V,Z,],X) is proportional to the joint density p(®,V,Z, J, X), which is, as a result
of additional applications of Bayes” Rule, can be decomposed using hierarchical structure in the

following way:

p(©,V,2,],X) = p(X|0,V,Z,])p(6,V,Z,])
= p(X|®,V,Z,])p(J|©,2)p(0,Z)p(V|®)p(0)
= p(X10,V,Z,])p(J|©,Z)p(Z|®)p(V|®)p(O). (3.1)

Here p(X|0®,V,Z,]) denotes the likelihood function, p(J|®,Z), p(Z|©) and p(V|©) are the dis-
tributions of the latent variables (jump sizes and jump times, respectively) and p(@®) is the prior
distribution. Given Markov property of the model we can write:

p(X/V|®1V/ZII) - p(thW’Xt—ll‘/f—ll]t)(I]t‘/IZtI@)l

p(J1©,2) = T]pU¥11Y,©,2)p(J)10,Z),

s [ I

p(z|®) = ]]pr(ZlO). (32)

T
[y

The above procedure can be applied to conditional state posteriors which include jump times and
jump sizes. Thus, MCMC algorithm with the Gibbs step samples iteratively drawing from the

complete conditional posteriors:

Parameters : P(@i|®\i/ Z, ], X V), i=1,.,k
Jump times : p(Z;|O, Z] X, V), t=1,..T

Jump sizes : p(J,]/10©,Z,J\;, X), t=1,..,T

where ©O; denotes the i-th element of the parameter vector ® and ©,; is the parameter vector
without the i-th element. In the case of stochastic volatility, the conditionals p(V;|©, Z, ], Vip, X ) for
t =1,.., T cannot be sampled from directly and thus, the Metropolis-Hastings algorithm is applied.
This algorithm samples a candidate draw from a proposal density and then accepts or rejects the
candidate draw based on a certain acceptance criterion. To start the procedure running, we have to
specify the prior distributions p(©) for all parameters of the model. When possible we assume a so-
called conjugate priors which after multiplying with the likelihood lead to a posterior distribution
belonging to the same family of distributions as the prior itself. Standard conjugate priors allow

to draw from the conditional posteriors directly. The choice of conjugate prior distributions is
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consistent with Johannes and Polson (2006), and will be discussed below, when we derive the

likelihood function and posterior distributions.

3.3. Derivation of the Likelihood function

In this section we show how to derive the likelihood of the most general case, the stochastic
volatility model with correlated jumps (SVCJ) model specified in Section 2.4. Likelihoods for the
models without jumps and/or deterministic volatility can be derived analogously.

We recall that the logarithm of the stochastic component of the electricity spot price is denoted
by X; = log(S;) and the instantaneous volatility process is denoted by V;. X; and V; are described
by the following system of SDEs:

1
dXt = (17(]/[ Xt) — —Vt ﬁ]/l]) dt + \/thwt 4+ ]tXZt, (33)
dV; = k(0 — Vy)dt + oo/ VidW) + 1) Z. (34)

Here, we assume that Z; ~ Ber(Bdt), J;' ~ () and JX|J} ~ N (ug +pj]y,07)". The term —By;

is a compensator,= that preserves the martingale property of the spot price S; process. This means
_ [ _ JX V]| = g [ppeteilt +30 _ PMetaoE

that yy = E [e/i —1| = E |E |e/i —1|]/|| =E |e %0 — 1| =t L

T 1. Discretizing
the SDEs in Eq. (3.3), we obtain

1
X = <ﬁAt — EthlAt +(1- ﬂAt)Xffl + ]tXZt) + thlAte‘f(, (3.5)
Vi = (K@At (11— xkADVeq + Y zt> + 0o/ Vi1AteY, (3.6)

where i = nu — Bu; = nu —p (e”ﬁz‘fé‘,r i 1) Then (X,g,W|Xt,1,Vt,1,®,Zt,]f{,]tV) follows

bivariate Normal distribution with the following parameters:

(Xt, Vi X1, V1,0, Z4, J&, 1Y) ~ N (fie, Zo), (3.7)
where
| [(aat = 3Viaat+ (1- AN X + X Z) 38)
. uy (kOAt + (1 — kA V1 + ]V Zy) '
and
00y P
Yo = Vi 1At = Vi, 1At 39
Vbt e PR (3.9)

1Ber, € and N denote Bernoulli, Exponential and Normal distributions, respectively.
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with ¢ = po, and Q = (1 — p?)o2. Thus, we obtain det(X;) = (V;_1At)2Q and

1

Q+y* —y
Vi_1AtQ) '

rol =

The likelihood function for the SVC] model is given by

p(X,V|©,Z,]) = ﬁp(Xt, Vil Xe 1, Vi1, 0, Z4, 15, 1)) (3.10)
T 1 1 X S . v
— [ Wexp <_§(Xt —up  Vi— ) (X — i, Vi — i) ) (3.11)
T 1 1 X N . .
- E 27V, At 72 P <—§(Xt —ue Ve —ud )2 (Xe— e, Vi — i) ) (3.12)
_ Q—T/Zﬁ( 1 ) . .
A\ VAt

1 ¢ 2y (X — i) Xe—puO)Vi—p/)  (Vi—uf)?
P [_Et;((m"’) viaat T voar v )

3.4. Posterior distributions

Assuming that the prior distribution for parameter 1, p(f1) ~ N (p, 0, ) we can find the poste-
rior distribution for 1 as p(1[X,V,Z,],0,;) x p(X,V|O,Z,])p

exp [—

(f1). Thus, we obtain

p(AlX,V,Z,],0,p)

(Xi — ui)? (Xe — ) (Vi —uf) (A—ma)*|
(Q“”) 7R A Y t) i -

=
~

S
llyg

H-

=1

s ant— AP (aab— AV Y o
or [ (e S0 o [ 0]

Here A” (X; + 2Vi_1At — (1 — nAt) X;—1 — JXZ;). Then, rearranging terms we can write

P(ﬁ|X V ]/@)/]4)

1 G QYY) 000 ooy ai (Vt—ﬂ}/)A 1

L (Q+¢2)A L (O Al L (VY AW
4 (BR ) (gt )]

t=1
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Thus, we observe that p(fi|X,V,Z,],0 /) ~ N(yy,ai‘z) where

Qv [0 7/ aﬁ (3.14)

T (Q+y2)At
(Ele . +¢7L2>
H

(Zz"_l (O+92) X3 Vir M= ()X —J5Z) g7 Vi) Vﬁ)

H

= %

and

1
03? = - . (3.15)
Q+)At
(ZtT=1 T+ %)

H

For the parameter () = (1 — p?)o? we assume prior distribution p(Q) ~ ZG(a§}, BS}), while for
P we assume p(Pp|Q)) ~ N (I”o , —) Then, the joint posterior distribution can be found as follows:

1
p(QYIX,V,Z,],0,104) = p(X, VIO, Z,])p(p|Q)p(Q) =~ T/ZH(Vt 1At>
( P — U2 (X = )Y Vi—w/) | (Vi—p)?
exP[ Z(““” VoA T va T voa ) |
2 Q
Po P — 29 +pf | Q! B
o (-4 ) o ()

1 exp [—; {¢2 <ZtT_1(Xt — V‘tx);/(vt—lAf> + Po) o (ZtTl(Xt — ) (Vi —g}/)/(Vt_lAt) + pgyg) }]

Va
(1& (Ve—pf)? 1 g2 Q_1<zf_1<xt—u£<><vz—uf>/<w1At>>2>].

O (T/2+ag)—1
———€eX + +
rr2+a) P | Tal\2 vas TP FR T T o R (VA + o

@)

Therefore, the parameters of the posterior distribution are given by

o YL (X = uX) Vi — )/ (Via ) + popd

I,[ =

1 Lim1 (Xe = u¥)2/ (Vier b1 + po
(74)2 = Q

' Yl (Xe = pf)2/ (Vioadst) + po

Q Q
0(1 - 0(0 + -

2
po JLELVi—m? 12 e 1 <zt L (X = 1) (V= 1)/ (ViaAb) + pop)*
2 Vigat 2P Lie1 (Xe — u$)2/ (VieaBst) + po

Now, we derive the posterior distributions for the stochastic volatility parameters, 6 and x. The
prior for 0 is assumed to be p(8) ~ N (u§,08"). The posterior distribution can be obtained as
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follows:

p(01X,V,Z,],0,0) =p(X,V|O,Z,])p(0) (3.16)
1 (X —puX) Vi — ) (Vi — pf)? 02 — 208
P20 =1 <_21P Vi1t * Vi1t ) P gz )

1 L& A1 X - & kAl b
_Z —— |1 =2 0
exp 5 {9 (t_zl v + ng> 0 ( Z QVt ’ + L v, + ng /

where AY = (V; — (1 — xAt)V;_ — ]/ Z;). Thus, the posterior distribution p(8|X,V,Z, 1,©,01) ~
N (18,09, where

T p(X—pX —(A=xMVi =]V Z) |y
) — Y- —QtVti +Zt1 letltt+%7()2 617)
Zt 1(1)(‘4 tl + gz
and
1
of = (3.18)

T  k2At ’
Zt ]. QVt 1 + 92

The prior for « is assumed to be p(x) ~ N (uf,05?). The posterior distribution can be written as
follows:

p(k|X,V,Z,],0,4) = p(X, V[O,Z,])p(k) (3.19)
1 & Xe—p ) Vi —n!)  (Vi—u)? K> — 2K
p _@t; <_2¢ Vi_1At * Vi—1At > P _7 =

1 D (0—Vi)?Ar 1 YXe—p) 0= Vi) | - (0—Vie)Af | ug
e [a o (B ) (TR B ) )

where Af = (Vi — V;_1 — ] Zt). Thus, the posterior distribution p(x|X,V,Z,],0 ) ~ N (45, of),

where

ZT P(Xe—p) (6-Vi—1) +Z}:1 0—Vi1)(Vi—Vi_1—]/ Zy) LM

y" Qv Qv oi? (3.20)
1= T (0-Vi1)?At | 1 '
Lici v T
and
o = L (3.21)
= 0—V,_1)2At :
Zthl % + %

In order to derive the posterior distribution for the jump size in the return process, X, and in
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the volatility process, ]/, we consider two cases:

* No jump, i.e. Z; = 0. In this case there is no additional information from the observations

and we simulate with the prior distribution
pUS T X0 Vi, Vi, Zi = 0,0) < p(JE |1 )P (1), (322)
where p(J}) ~ E(v) and p(JE[])) ~ N (e + p1J¢ %)
* Single jump, Z; = 1.
pUS T 1 X0 Vi, Vier, Ze = 1,0) o p(Xe, Vi JE T Vier, Ze = 1 @) (]t Ut p(J

op |55 (4 g B R gy ekl ChoiD) (b )]

[_ (U2 = 2 (ue + 1)) + (e + 0111 )?)

-exp 202 cexp(—7]{) o

1 (AF = J¥)? (AF=TNAY =T AV =JY)?
eXp{ 20 ((Q+lp) Vi1t —2 Vi_1At * Vi1t ﬂ

(U2 =20 (e + o1 ] ) + (e +010)%)

2
2(75

~exp(=7JY),

-exp

where AX = X; — At + 1V, 1At — (1 — A X,—1 and A = V, — k0At — (1 — kA V1. We

obtain
p(J5 1V |Xe, Vi, Vi1, Z = 1,®) o« p(Xe, VI T Vi1, Ze = 1,O)p(GEIT ) p(JY ) o
N )
exp [ (%2 —2fi(zﬂg+m]tv )
L 4
exp | L 20AE AN OV 2+ @Iy
| 20 Vi_1At 2a§

1 Q + ¢? 1
o[ {0 (92224 )

ox [ Q)AL —pA)  pe Y Py
2]f< QV,_1At + éﬂt QV,g,lAtJrag +

2
1 (OQFYIAT —9AL be v ¥ o
’ ( (Q-+y2) ) QV,_1At ‘: t QV,_ 1At 0'5
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QthlAf r§ QthlAt 0’2

2
AN —pAS+ A pepy
i g2 2]/ 5 — Y x
OV 1At QV,_1At o2

{ .
exp |- {(n ? ((ffijZ +i>
Q K

2
exp 1 )((Q+¢2)Ax pAY +”€+h< y +ﬂ>)

exp | —

~—~
<
N—
©)
A+
Nt
—
o)

2
e

2
_ (Q+¢p?)AF —pAY | pe U 0]
2 ( QVHAt * g“f Qvt,mt‘*g_g +

2
1 Q+¢)AT—pA e (¥
2<(Q+¢2) _|_L) QV, At Ug FlQVv,_iAt o'g
QVy 1At ag
2
1 (Q+9?)AS —pAY | B Y o1
eX + = _|_ + —=
P ) (Q+y?) | 1 ( QV;_1At é’ ]t QV;_ 1At o‘g
S\ aviar T2
- Y 4 ?
) —+—f)
R (i +2) |
OViBE T o2
. ((mw JAX gAY +Hg> ( y +p_£>
oy | YA AL pepy o\ T Weadt * o
t QV;_1At oF Q+¢2) | 1
QV,_{At + =

Thus, p( ]tV |Xt, Vi, Vi_1,Zs = 1,0) is the truncated Normal distribution with mean

<W+ lé) <va At+P£>
—tpAf(—&—A ]lgP] P t—1 ag t—1 g

QV,_1Af ;
O+
v (%Vt lﬁA)t_'_ 72
ui = - (3.23)
v
1 Pl (QVflAt+"§ )

v + 5 -
QvtflAt (7’g ( (Q'H/Jz) +1>
QV;_ 1At é

22



and variance

v\ 2 1
((71]’) — . (3.24)
4 ]
1 i (QV”NJF"@Z')

P S _|_ — —
QV,_ A T & (mwﬂ) +1>
QV,_1At Ug

¢

The posterior p( ]tX |]tV , X1, Vi, Vi_1,Z+ = 1,0) follows Normal distribution with mean

Q) A —ypAY | Be | gV Y o1
OV, AF +U_§+]t Qvt,lAﬂLg

I
QV,_1At ag
and variance
2
A 1
((71 ) =~ o) L1 (3.26)

avar g

We assume that jumps Z; arrive with intensity BAt: Z; ~ Ber(BAt). Then, the posterior

distribution is Bernoulli, with the parameter B; that can be found as follows

p(Z = 11X, Vi, Vi1, 1,©) [Tp(X0, Vil Ze = 1, Vi1, 1,©)p(Z = 1) = (327)
1 (Q+¢*)(A7 -5 (AP =B =1)) | (Bf —])
P [_5{ QV, At —2 QV, At AV A H - (BAL),
p(Zy = 0|X¢, Vi, Vi1, ],0©) HP(thVt|Zt =0,Vi1,],0)p(Z; =0) = (3.28)
1 [((Q+y*)(AF)?*  _w(AF)(Bf) | (BF)?
b {_E { VAt P auar T QVt_lAtH (1= pa),

where AZ = X; — ibt + 3Vi_1At — (1 — nAt)X;—1 and B = Vi — k0At — (1 — 0At) V1. Thus,

P(Xt/ ‘/flzf — 1/ ‘/t—1/]/®)p(zt - 1)

= . (3.29
‘Bl p(Xt/Vt‘Zt — 1/Vt—1/]/®)l7(zt - 1)+P(Xt1Vt’Zt :0/‘/1’—1/]/®)p(zt :O) ( )
Let B = BAt ~ Beta(ocg , ﬁg) Therefore, the posterior distribution is given by
PBIZ) o (ZIB)p(B) = BE12(1— BT T Zepeb (1 — By (3:30)
ATy Zetah (1 _ g\T-S0 Zet6h s p s p
pri=1 480 (1 — B) ' ~ri=1 2P0 ~ Beta() | Zi+ay, T— Y Zi + By)-
t=1 t=1

Parameters of the posterior distribution of the jump size [X|]} can be found from regressing
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Ji on JV. We assume that the prior p(jg) ~ N/ ( P‘o , (70 ) If there is no jump, we can simulate

directly from the prior, since no information can be drawn from the sample. The posterior is

given by
T (JX = 1z — oy )V )?
p(ucll* 1Y, 2,0,,,) « p(J*11", Z,0)p(ue) = exp [_ Y Iz 260 ik
=1 z
_ HeN2
exp | — (e :lo 2)
| 2(«)
T T X 14 Ke
| - _
exp _1 ‘u% Zt:l Zi=1 + 1 _2]/[5 ZHZt:1 (]t p]]t ) 4+ PIO
2 Ug % =1 Ug He'\ 2
_ () (")
Thus the posterior is normal A (y}°, o} 2 ), where
= —— (331)
Yim1lz,=1 L1
% (agé)z
1
0’ = (3.32)
Zt:lHZt:1+ 1
% (ag’;‘)z

We have to impose a natural restriction on p; ~ Unif[—1,1].

JX = e —o71})?

2
2(7(;r

X
—20; ZI[ ]t(]tg—yg)}] Li-1<p<1y-
¢

T
p(oslT 1Y © 1)) < pUEITY, ©)p(p)) o< exp [— Y Iz, (
t=1

1
x exp [—— {p] ZI[Zt—lj

] I 1<o<1y
V

C

_ Yz UF —pe)
Y, ]Iztzl(]tv)z

Thus, the posterior distribution is the truncated Normal with mean y?l

2
and variance ((Tf J ) = +Vz
T ],
Yo ]IZtilng

2 2
From the prior p((fg) ~1G ((xgé, ,Bgé ), the posterior is given by

(%U JY ®/a)°<P(] 1V, 0)p (g)
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L1lz=1 T X V2 of of
2\~ 2 Y11z :1(]t — ue—pyl; ) 2\ % 1 ,50’
<U§> P [_ | 2(75 ' (U§> P ‘7@%
T T X V2
Iy 2 N P — Uz — 2

Finally, from the prior p(7y) ~ G(a], B)) we obtain the posterior for 7 as
v v Y10z, . v ag—1 9t
p(V]7, Z) o< p(J71Z,7)p(7) e y==1 2 exp | =y ) Tza]i | - 4™ exp [—7Bg]
t=1

T T
~G ((Xg + ) z=1, B0+ ) Hzf—lftv) :
=1 =1

All parameters outlined above can be simulated from the corresponding posterior distribu-
tions using the Gibbs sampler. In the next section, we outline the procedure which can be

used to simulate the stochastic volatility.

3.5. Estimating stochastic volatility

Stochastic volatility values V. = {Vj,..., Vr} that are latent variables, have to be estimated
from the data similarly to the set of parameters and latent variables discussed in the previous
section. However, there are two issues that make it more challenging to proceed with the
simulations. Firstly, the dimensionality of the volatility vector V is very high and corresponds
to the length of the vector of observations X. Secondly, there is no closed form posterior
distribution, which could be identified as any well-known distribution to simulate from. This
implies that we have to use the Metropolis-Hasting algorithm, approximating the simulation
from the posterior distribution by drawing samples from another distribution. This has to
be done individually for all values V; in the vector of volatilities V, leading to a significant

increase in computational complexity of the estimation procedure.

The posterior distribution of the single stochastic volatility value V; for 1 <t < T is given by

(Vi Vigr, Vii1) = p(Vi| X, Vis1, Vi1, Z, 75,1V, ©)

< (Xp, Vi|Vic1, Zo, T, 1Y, ©) - p(Yiern, Vi | Ye, Vi, TS0, Y0, ©) (3.33)
1 o (Xe—p)?* o K= V=) | (Vi —p)?
P [ 20 <(Q B Y e 7 VA V.Y
1 1 o (Xig1 — Mﬁl)z (Xey1 — P‘fil)(vtﬂ - VY+1) (Vi1 — P‘Y+1)2
VAt P [ 20 ((Qﬂb ) VAt 2y VAt * VAt '

For each iteration n, n = 1,...,, N, the values of the stochastic volatility vector are updated
from V}' to V"™ as described in what follows. Suppose that in the vector of volatilities
{VI”H, . Vt”fll, V.., V}} the first t — 1 values are updated after n iterations, while the other
values at ¢, ..., T are yet to be updated. We simulate a proposal for an updated value V;* from
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N (V}',0%,;). Here, the parameter of volatility, 03,;; is chosen exogenously in a such a way

that the acceptance rate

n—(‘/t*l vn Vn-‘rl

S Vi)
1 3.34
”(‘/tnfvtﬂlfvtnjl ) ) .

&(V7,V;~Y) = min (

in a single draw during the Metropolis-Hasting step is approximately 0.5. We accept V;* as an
update by setting V/"™! = V;* with probability a(V;*, V/"~!) and reject the proposal by keeping
V' = V' otherwise.

4. Model Testing

This section aims to present various diagnostic tools which allow to quantify the model perfor-
mance. Model comparison can be assessed by means of model fit to the data and the complexity of
the model as a penalty factor. The model fit is measure by a deviance statistic and the complexity
is represented by the number of effective parameters. In a non-Bayesian setting the deviance is
used as a quantity which estimates the number of degrees of freedom in the underlying model: It
refers to the difference in log-likelihoods between the fitted and the saturated model (that is, the
one which yields perfect fit of the data). Obviously, increasing the complexity of the model by, e.g.,
incorporating stochastic volatility jumps will lead to a better fit of the model to the data. Therefore,
one should incorporate a penalty term for complexity.

In analogy, Dempster (1997) and Spiegelhalter et al. (2002)? have developed the deviance infor-
mation criterion (DIC) as a Bayesian model choice criterion. DIC solves the problem of comparing
complex hierarchial models when the number of parameters is not clearly defined. The DIC value
is computed as a sum of two components: a term D that measures goodness of fit and a penalty

term pp which accounts for model complexity:
DIC = D + pp. (4.1)
The first term can be calculated as follows:

D = Egx{D(®)} = Egx{—2log f(X|®)} (4.2)

where X denotes the logarithm of the stochastic price component and @ is a vector of parameters.
The better the model fits data, the larger is the likelihood, i.e., smaller values of D indicate a better
model fit. In fact, since D already includes a penalty term pp, it could be better thought of as
a measure of “model adequacy” rather than a measure of fit, although these terms can be used

interchangeably. The second component measures the complexity of the model due to the effective

2 An application of this criterion in financial econometrics can be found in Berg et al. (2004).

26



number of parameters:

pp =D — D(0) = Egx{D(0)} — D{Eg|x(0)}, (4.3)

it can be rewritten as
pp = Bg|x{—2log f(X|®)} + 2log f(X|®). (4.4)

Clearly, since pp is considered to be the posterior mean of the deviance (average of log-likelihood
ratios) minus the deviance evaluated at the posterior mean (likelihood evaluated at average), it
can be used to quantify the number of free parameters in the model (the number of degrees of
freedom). Further, defining —2log f(X|®) to be the residual information in data X conditional
on O, and interpreting it as a logarithmic penalty, or uncertainty, see Kullback and Leibler (1951),
Bernardo (1979), pp can be regarded as the expected excess value of the true over the estimated
residual information in the return data X conditional on ®, and thus, can be thought of as the

expected reduction in uncertainty. From Eq. (4.3) we obtain:

D = D(®) + pp, (4.5)

and thus, DIC can be rewritten as the estimate of the fit plus twice the number of effective param-
eters:
DIC = D(®) + 2pp. (4.6)

In addition to using the DIC to access model fit, the ability of considered models to price electricity
futures will be assessed by means of computing the difference between the actual futures price and
the futures price computed using the model.

5. Empirical Results

This section discusses data used in the empirical analysis and presents results for the parameter

estimation, model fit and pricing of futures contracts.

5.1. Data Description

In order to perform the empirical analysis of the models presented in Section 2 we consider data
for spot electricity prices and futures prices from the state of New South Wales (NSW), Australia.
The data set covers time period from January 1, 2006 to December 31, 2015, and consists of 3651
daily observations. As it is evident from Figure 1, the time series of spot electricity prices exhibits
seasonal fluctuations, spikes and mean-reverting behaviour. In particular, during the hot months
(December to February) and the cold months (June to August) the spot electricity prices are more
spiky and volatile compared to prices across other months

Table 1 presents the summary statistics for the spot prices, 5;, the logarithmic prices, log(Et), the
price changes, AE; = S; — S;_1, and the logarithmic price changes, Alog(&;) = log(E:) —log(Z;-1).
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Figure 1: The spot electricity price for the state of New South Wales, Australia for the period from January 1,
2006 to December 31, 2015.

The data display all the characteristics summarised above. In particular, one observes that the range
(the difference between the maximal and the minimal price) is large due to spiky behaviour of the
spots. The standard deviation of daily logarithmic price changes is 20%, which correspond to
annualised volatility of 382%. We also observe that the spot price exhibits a kurtosis of over 680

and a skewness larger than 21, implying a heavy-tailed and right skewed price distribution.

Table 1: Summary statistics for the daily spot price data &, the logarithmic prices log(&;), the price changes AE; and the logarithmic price changes,
Alog(E¢)) for the state of New South Wales, Australia for the time period from January 1, 2006 to December 31, 2015.

Series Mean Median Min Max Range Std Dev Skew Kurt
Hi 38.25 31.31 1520  1281.93 1266.73 36.39 21.74 680.16
log(Z+) 3.53 3.44 2.72 7.16 4.43 0.42 124 7.82
A =5 —Eiq 0.01 31.31 -915.72 917.10 1832.83 27.69 0.34 699.35
Alog(Ey) = log(s_fl) 0.00030 -0.0015 -2.099 2.29 4.39 0.20 -0.17  29.78

5.2. Deterministic Component

As specified in Section 2 the logarithm of the spot price, log(E¢), can be decomposed into a
sum of two components, namely the logarithm of the deterministic component, log(U;), and the
logarithm of the stochastic component, X; = log(S¢):

log(&;) = log(U;) + X;. (5.1)

The log of the deterministic component, u; = log(U;) combines the long-term linear trend Hj, the
long-term sinusoidal (one-year cycle) component Hj, and the short-term seasonal component, H3
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Figure 2: First panel: the logarithmic spot price log(Z;) together with its deterministic component, u;; second

panel: stochastic component X; = log(&;) — u;; third panel: the differences of the stochastic component
AX; = X; — X;_1.

as follows: )
. T
up=oa+p-t+y-sin|{(t+7)5==|+¢s-Dg+Lm- Mpu. (5.2)
—— 365 N — .
Hy h ~~ g Hj
Hp

Here, coefficients a, B, v, T, ¢y, ford = {1,...,6}, and {y,, for m = {1,...,11}, are constant parameters
estimated by the means of the non-linear least-squares regression. Dummy variables D; = {0,1}
and M,, = {0,1} are used as indicator variables for the week day and month, respectively. This
functional form of the deterministic component combines the ideas proposed in the literature (see,
for example, Pilipovic (1997); Lucia and Schwartz (2002a); De Jong (2005); Kosater and Mosler
(2006); Ignatieva (2014)).

We estimate parameters of Eq. (5.2) and present the logarithmic spot price log(Z;) together with
its deterministic component in the first panel of Figure 2 for the entire period from January 1, 2006
to December 31, 2015. The stochastic component obtained as a difference between the logarithmic
spot price and the deterministic component, X; = log(Z¢) — u;, is shown in the second panel of
Figure 2. Finally, the changes of the stochastic component, AX; = X; — X;_1, are presented in the
bottom panel of Figure 2.

5.3. Estimation Results

Table 2 reports means for parameter estimates obtained for X;, which is the logarithm of the
stochastic component of electricity spot price for different model specifications, which include
mean-reverting model (MR); mean-reversing model with jumps in the electricity spot price (MR]);
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mean-reversing model with stochastic volatility but no jumps (MRSV); mean-reversing model with
stochastic volatility and jumps in the electricity spot price (MRSV]); mean-reversing model with
stochastic volatility and jumps in the electricity spot price and volatility arriving contemporane-
ously (MRSV(]J); mean-reversing model with stochastic volatility and jumps in the electricity spot
price and volatility arriving independently (MRSVI]). Table 2 also reports the DIC and the mean
squared error (MSE) for spot prices, defined as the average squared difference between the actual
spot price and the spot price computed using the model; model ranking is given in parenthesis for
both measures.

Table 2: Parameter estimates, the DIC (with model ranking given in parenthesis) and the MSE for the in-sample estimated spot electricity prices

relative to the market spot electricity prices for different model specifications. The reported parameter estimates are obtained using spot electricity
prices in NSW from 01.01.2006 to 31.12.2015.

MR MRJ MRSV MRSV] MRSVC] | MRSV]]
n 0.1357 0.2687 0.4269 0.6683 0.6260 0.6428
1 0.1202 0.0604 0.0326 0.0266 0.0276 0.0269
o 0.1797 0.0959 - - - -
A -0.1445 -0.0971 - - - -
ue - 0.0249 - 0.4044 0.6230 0.2461
0z - 0.4307 - 0.1242 0.1102 0.2266
B - 0.1239 - 0.0021 0.0010 0.0026
K - - 0.0702 0.0712 0.0719 0.0707
0 - - 0.0256 0.0275 0.0271 0.0273
0y - - 0.0467 0.0519 0.0513 0.0512
P - - 0.7276 0.7978 0.7885 0.7934
oy - - - - 0.0022 -
¥ - - - - 2.1826 19.1960
BY - - - - - 0.0471
DIC | -2173(6) | -3738(5) | -32103 (4)| -32257(3)| -32522(1)| -32333(2)
MSE| 09988 (6)| 0.9601 (5)| 0.7623 (4)| 0.7524 (3)| 0.7515(1)| 0.7521 (2)

Since the results in the table present parameter estimates for the stochastic component of the
logarithmic electricity spot price (i.e, after seasonality has been removed) and not the actual log-spot
price, it makes some parameters difficult to interpret. However, we notice that the long-run mean
u of the stochastic component is significantly larger for models with stochastic volatility compared
to models with deterministic volatility; y also increases when we add jumps (i.e. u is larger for
MRJ model compared to MR model, and it is also larger for MRSV] model compared to MRSV
model). The speed of mean reversion in the stochastic component of the price, 77, on the contrary,
decreases when stochastic volatility is incorporated into modelling. Furthermore, for models with
stochastic volatility, the long-run mean of the variance 6 is approximately 0.027, which corresponds
to an annualised long-run volatility 1/365 x 6 of 314%, which is consistent with a rough estimate of

-
=t

market volatility obtained using annualised standard deviation of log-changes log(==) reported

B q

in Table 1. The speed of mean reversion of SV « is consistent across all stochastic volatility models,
and corresponds to approximately 0.07.

When comparing model performance in terms of the DIC, we observe that the most complex
models MRSVC] and MRSV]]J that in addition to stochastic volatility contain jumps in the under-
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lying and the volatility, are ranked first and second, respectively. MR] performs only marginally
better compared to the model without jumps (MR model), while stochastic volatility is clearly the
most significant factor contributing to the model fit. The last row of Table 2 reports the mean
squared error (MSE) for the in-sample estimated spot electricity prices relative to the market spot

electricity prices. We observe similar model ranking as the one based on the DIC.

Figure 3 shows the estimated stochastic volatility path 1/V; under the mean-reverting stochas-
tic volatility model without jumps (MRSV) in the top panel, and the mean-reverting stochastic
volatility model with jumps (MRSV]) in the bottom panel. We observe that the long-run mean is
consistent across both panels, and is in line with the value of 6 (of approximately 0.02) reported in
Table 2.
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Figure 3: Estimated stochastic volatility paths under the mean-reverting stochastic volatility model without
jumps MRSV (top panel) and the mean-reverting stochastic volatility model with jumps MRSV] (bottom
panel).

Figure 4 shows the estimated jump probabilities and jump sizes obtained based on the posterior
means under the mean-reverting model with constant volatility MR] (two panels on the top) and
the stochastic volatility MRSV] (two panels on the bottom).

5.4. Pricing of futures contracts
Given the estimated parameters, we can compute prices of futures contracts under various

model specifications. In order to access the ability of considered models to price electricity futures,
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Figure 4: Estimated jump probabilities and jump sizes under the mean-reverting model with constant volatility
MRJ (two panels on the top) and with stochastic volatility MRSV] (two panels on the bottom). The jump
probabilities and jump sizes are based on the posterior means.

we will compute the relative pricing error defined as the relative difference (model futures price -
futures price)/futures price. We will also report the mean squared error (MSE) for futures prices,
which is the average squared difference between the actual futures price and the futures price
computed using the model.

5.4.1. Mean - revering model

Figure 5 shows the market price (blue line) and the model price (red line) obtained using the
mean-revering model with deterministic volatility and no jumps (MR). We notice that although this
model captures largest jumps in the market, if clearly fails to capture small market movements. This
results in large pricing errors reported in Table 3 and graphed in Figure 5. Pricing error is defined
as the relative difference (model futures price - futures price)/futures price. The distribution of
the pricing errors is characterized by the mean, median, standard deviation, 5%-, 25%-, 75%- and
95%-quantiles, skewness and kurtosis. In addition, Figure 6 shows nonparametric distribution of
the relative pricing errors. From the table and the figure one observes that the pricing errors exhibit
clear seasonalities, where the lowest price difference is typically observed for January (the relative
pricing error in January corresponds to 22%) and the highest price difference is typically observed
for July (the relative pricing error in January corresponds to 25%). Large negative pricing errors are
typically observed in hot summer months December through March when electricity demand is
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high due to extensive use of air-conditioners or cooling devices. During summer month the model
tends to underestimate the market futures price. Note that the estimation bias which results in the
underestimation of the market, is likely to be due to the spiky and extreme volatile behaviour of the
spot prices used for computation of the futures prices and the fact that market futures prices are
considerably smoother than the fitted futures prices. Similarly, the largest positive pricing errors
are typically observed in cold winter months July through August, when electricity demand is high
due to extensive use of heaters. In these months the model tends to overestimate the market futures
price. Again, due to spikes that are present in the data used in the estimation procedure, model

prices will experience spikes as well, which will result in the overestimation of futures prices.
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Figure 5: Futures price for the quarterly contracts with nearest maturity expiring on March 31st, June 30th,
September 30th, December 31st for NSW. We show market price (blue line) and model price (red line)
obtained using the mean-revering model with deterministic volatility and no jumps. The sample covers time
period from 03.01.2006 to 05.12.2014.
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Figure 6: Distribution of in-sample relative futures pricing errors obtained using the mean-revering model with
deterministic volatility with no jumps.
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Table 3: Summary statistics for in-sample relative futures pricing errors obtained using the mean-revering model with deterministic volatility and
no jumps for the state of New South Wales and the time period from January 1, 2006 to December 31, 2015.

Month Mean Median Std. Div Q5% Q25% Q75% Q95% Skew  Kurt
January -0.2212 -0.2387 0.1577 -0.4704 -0.3472 -0.0863 0.0249 0.1276 2.0995
February |-0.1643 -0.0844 0.2191 -0.5137 -0.3530 0.0070 0.1751 -0.0717 1.7913

March -0.1926 -0.2067 0.2078  -0.5013 -0.3601 0.0101 0.0699 -0.1438 1.4659
April 0.1554 0.1092 0.2286  -0.2969 0.0307 0.3676 0.5181 -0.0621 2.5707
May 0.0824 0.0734 0.1311 -0.1639 0.0171 0.1541 0.3021 0.0850 3.2374
June 0.0061 0.0201 0.0946  -0.1695 -0.0498 0.0699 0.1405 -0.5018 2.7413
July 0.2527 02462 03196  -0.2991 0.0353 0.5391 0.7013 -0.2671 2.2261

August 0.1120 0.0897 0.1610  -0.1190 -0.0156 0.2209 0.4139 0.4754 2.3384
September | 0.0176 0.0185 0.0726  -0.1391 -0.0088 0.0543 0.1308 -0.2447 3.5599
October 0.0304 -0.0213 0.2356  -0.2865 -0.1600 0.1882 0.4744 0.5121 2.4853
November | -0.0753 -0.0882 0.1908  -0.3732 -0.1659 0.0067 0.2683 0.0109 2.9126
December | -0.1581 -0.0387 0.2379  -0.6949 -0.3610 0.0091 0.0915 -1.0686 2.9978

5.4.2. Mean - revering model with jumps

Figure 7 shows market price (blue line) and model price (red line) obtained using the mean-
revering model with deterministic volatility and jumps (MR]). Pricing errors are reported in Table
4 and graphed in Figure 8. Similarly to the MR model without jumps, we observe that the model
can only capture large movements in the market, and clearly fails to capture smaller market fluc-
tuations. Similar performance of the MR and MR] model is consistent with the results for the DIC
in Table 2, which shows only marginal improvement when using the MR] model, compared to the
MR model.
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Figure 7: Futures price for the quarterly contracts with nearest maturity expiring on March 31st, June 30th,
September 30th, December 31st for NSW. We show market price (blue line) and model price (red line)
obtained using the mean-revering model with deterministic volatility and stochastic jumps. The sample
covers time period from 03.01.2006 to 05.12.2014.
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Figure 8: Distribution of in-sample relative futures pricing errors obtained using the mean-revering model with
deterministic volatility and stochastic jumps.

Table 4: Summary statistics for in-sample relative futures pricing errors obtained using the mean-revering model with deterministic volatility and
stochastic jumps for the state of New South Wales and the time period from January 1, 2006 to December 31, 2015.

Month Mean Median Std. Div Q5% Q25% Q75% Q95% Skew  Kurt
January -0.2241 -0.2502 0.1716  -0.4670 -0.3669 -0.0858 0.0124 0.5885 3.6947
February |-0.1684 -0.0928 0.2426  -0.5395 -0.3601 0.0125 0.1349 0.5375 4.4589

March -0.1973 -0.2082 0.2091  -0.5088 -0.3643 0.0104 0.0533 -0.1748 1.4480
April 0.1438 0.1055 0.1988  -0.2269 0.0254 0.3012 0.4725 0.1201 2.5639
May 0.0663 0.0627 0.1149  -0.1528 0.0135 0.1370 0.2663 0.0336 3.1385
June -0.0022 0.0144 0.0934  -0.1852 -0.0633 0.0516 0.1287 -0.4969 2.9794
July 0.2361 0.1943 0.2925 -0.2682 0.0430 0.4855 0.6726 -0.2144 2.3322

August 0.0969 0.0629 0.1471  -0.1127 -0.0095 0.2125 0.3665 0.5587 2.5284
September | 0.0098 0.0161 0.0708  -0.1430 -0.0142 0.0433 0.1268 -0.3330 3.5392
October 0.0184 -0.0111 0.2150 -0.2710 -0.1636 0.1518 0.4388 0.5769 2.6750
November | -0.0875 -0.0775 0.1886  -0.3889 -0.1860 0.0148 0.2430 -0.1247 2.9489
December | -0.1625 -0.0248 0.2389  -0.6991 -0.3643 0.0070 0.0636 -1.0590 3.0165

5.4.3. Mean - revering model with stochastic volatility

Figure 9 shows market price (blue line) and model price (red line) obtained using the mean-
revering model with stochastic volatility and no jumps (MRSV). Pricing errors are graphed in
Figure 10. Similarly to the MR and MR]J model, we observe that the model can only capture large

movements in the market, and clearly fails to capture smaller movements.

5.4.4. Model comparison by means of the MSE

In order to draw an overall comparison across models, we report the mean squared error (MSE)
for the MR, MR] and MRSV models in Table 5. The MSE is defined as an average squared difference
between the actual futures price and the futures price computed using the model. From the table
we observe that the model with jumps (MR]) performs marginally better compared to the other
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Figure 9: Futures price for the quarterly contracts with nearest maturity expiring on March 31st, June 30th,
September 30th, December 31st for NSW. We show market price (blue line) and model price (red line)
obtained using the mean-revering model with stochastic volatility and no jumps. The sample covers time
period from 03.01.2006 to 05.12.2014.
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Figure 10: Distribution of in-sample relative futures pricing errors obtained using the mean-revering model
with stochastic volatility and no jumps.

two models.
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Table 5: Mean Squared Errors (MSE) of the in-sample estimated futures electricity prices and the market futures electricity prices in NSW from
01.01.2006 to 31.12.2015, for different model specifications.

MR MR] MRSV
MSE 132.9515 130.7440 132.6623

6. Conclusion

This paper provides a comprehensive analysis of continuous-time stochastic volatility jump-
diffusion models in context of pricing of futures contracts written on electricity spots. Various
parsimonious models and more complex models which include stochastic volatility and jumps
in the underlying electricity spot price and volatility are considered. The selected models are
specified in such a way that they capture the most prominent characteristics and stylised facts of
the electricity spot market including mean reversion, seasonality, extreme volatility and spikes.
Estimation of model parameters and latent variables is performed by means of the Markov Chain
Monte Carlo (MCMC) technique for the Australian electricity market. Based on the results for
the deviance information criterion (DIC) and the mean squared errors (MSE), we conclude that
stochastic models with jumps in both, the underlying and its volatility (MRSVC] and MRSVI]
models) perform best, followed by stochastic volatility models without jumps (MRSV model), while
models with deterministic volatility are the worse performing, even if jumps in the underlying
electricity spot price are included (MR] and MR). Finally, as a pricing application, we compute
futures prices in a closed or semi-closed form and demonstrate that the model fits data well in-

sample and out-of-sample.
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7. Appendix

7.1. Proof for the Expected Value in Futures Equation

We aim to prove Eq. (2.29), that is, to show that

]E;Q [exp {/Teﬁ(Ts) In(1 —i—])st}}
t

T
= exp [/ exp { (ln(l +uy) — %0%) e 1(T=s) 4 %afe‘zW(T_s)} Bds — ﬁr} ,
t
(7.1)

where T = T — t. We use the notation from Cartea and Figueroa (2005) and evaluate
T T
EQ {exp { /t e 1T In(1 + ]S)dNSH — EQ {exp { /t zxstsH (7.2)

s = e 1T In(1 4 J;). (7.3)

where

We first evaluate (7.2) on the interval [0,¢], and then extend calculation to the interval [t, T|. We

start with defining

t
Ly = exp {/ txsts} =™ (7.4)
0
where ;
my = / asdNs, (7.5)
0
or, equivalently,
dmt = Oétht. (7-6)

In (7.5) and (7.6), m; denotes a time of a jump which has size «; such that it holds:

t_
my = mi— + o = / asdNs + g, (7.7)
0

where t— indicates the time just before the jump has occurred.

Following Etheridge (2002) and Cartea and Figueroa (2005), we use generalized It6 lemma to
derive the SDE for L;:

%dmt - M(mt — my—)dN; + (Ly — Li— )dNy, (7.8)

dL; = om; om;

where the second derivative is not included since the process in (7.6) is a pure jump process. Using

(7.7), we can rewrite (7.4) as follows:
Lt = emf*”f = Lt_e”‘f. (79)

41



Thus,
—_) =L (7.10)

and plugging (7.6), (7.7), (7.9) and (7.10) into (7.8), we obtain
dLy = Ly—(e" — 1)dN;. (7.11)
Integrating (7.12), we obtain
Ly =1+ /Ot Ls(e" —1)dNs with Lo = 1. (7.12)
By taking Q-expectation of (7.12), we obtain
EQ[L] =1+ /O t EQ(L] (1Eg? 6] — 1) Bds, (7.13)

where we used ]EE)Q [AN;] = Bdt with B denoting the intensity of the Poisson process. Defining

ny = ]Eg2 [L¢], we can rewrite (7.13) as follows:

t
ny =1 +/O g <1E5Q [e] — 1) Bds, (7.14)
or, equivalently,
dTlt . Qr a
= <IE0 %] — 1) B. (7.15)
Integrating (7.15), leads to
tdnt . t O as
= /0 (EQLe] - 1) s, (7.16)
that is,
t
In(n;) = / (ES[e] 1) pds. (7.17)
0
Thus, we obtain for n;:
t
ny = exp {/0 <]E6Q [e*] — 1) ﬁds} : (7.18)

Since n; = 1E6Q [L¢], and L; is given by (7.4), we obtain:

EQ [exp { /0 t thstH — exp { /O t (EQ(e) - 1) ﬁds} (7.19)

In order to evaluate (7.19), we start with calculating the expected value:

EZle] = Eflexp{e’ " In(1+],)}]
= exp {]E‘OQ [e”(s_t) In(1+ ]s)] + %WW? [eﬂ(s_t) In(1+ ]s)} }
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= exp {e”(s_t) (ln(l +uy) — %0%) + %62’7(5_00]2} (7.20)

Here, we have assumed that jumps are log-normal with parameters

In(14+])~N (111(1 +uy) — %af, a,z) , (7.21)

where y; is the expected jump size and o7 is the volatility of a jump size. Thus, (7.19) becomes

EQ [exp { /0 t ochNsH

t 1 _ 1
= exp [/0 exp { (ln(l +uy) — 5012) et 4 57 e2’7 =) },Bds - ﬁt} (7.22)

It is easy to show that on the interval [t, T] (7.19) becomes

EQ [exp { /t ! astsH = exp { /t ! (]Egl[eﬂfs] . 1) /3ds} . (7.23)

Thus, we obtain the general formula for (7.24) on the interval [t, T]

EQ {exp { /t TastsH

= exp [/T exp { (ln(l +uy) — 1(72> e 1T=s) 4 1(726_2’7 T=s }ﬁds - [37}
‘ 27/ 27/
(7.24)

where T =T — ¢.

7.2. Characteristic Functions and Fundamental PDF

We define the characteristic function of the logarithm of the stochastic component of the spot
price, X7 at time T as follows:

I(t,T,¢) = EQ [eifPXT] ) (7.25)
where i is imaginary unit with i> = —1 and ¢ € R is a Fourier parameter.

In order to obtain characteristic function, we need to compute an expectation in (7.25), which is
a function of t, X; and V;: ®(t, X, V;) = IE%2 [¢!#XT]. By It6 formula, the integral representation for
d(t, X;, Vi) has the following form:

T 9o Taq> T 9°d
O(t, X7, Vr) = O X, V) +/ ——ds +/ 2 t mazxs'{l
S
Taq> Tazop 5
* / 2 avzdv
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T 92®
* /t axay  XedVs + tgg[@(s,xs,vs)—@(s,xs_,Vs)]

+ Z [qD(S/ XS/ ‘/S) - q)(S, XS/ ‘/S—)] (726)
t<s<T

Assuming that the dynamics of the log-price process X; = In(S;) under the risk-neutral measure
Q take the form

X, = ( (Xt, Vi dt——Vt)Jr\/thWt +dpX

we can substitute the process specifications in (7.27) into the SDE (7.26), which, after simplifying,

leads to
T T
®(t, X7, V1) = q’(t,Xt,Vt)-l-/ ag-l-z‘iq) ds+/ \/Vsagdwx
t ot ¢ 0X
T od v
b [ VSR + Y [@(5, X V) — Dls, X, Vo)
t t<s<T
+ 2 [CI)(S/XS/ VS) _(I)(S/XS/ ‘/S*)]/ (728)
t<s<T
where
s 5 1 ob . 9D a P 1 a2c1>
a2<1>

is the so-called risk-neutral generator defined in Oskendal (2002).
If we could show that ®(t, X;, V;) solves the PDE

oLy

SpHA® + AYEQ |0t X+ 5, Vi) = (t X, Vi) |

+ AVEQ [cp(t, X, Vi+ V) — &t Xf,vt)} —0, (7.30)

where JX and JV denote the jump sizes in the log-price and the variance, respectively, equation
(7.28) will result in

T 0D | - oD .
D(t, Xr, Vr) = (t, X, Vi) + | \/Vsa—deer/ (V) SodmY, (7.31)
t t V
and, taking the expectation, we obtain

®(t, X, Vi) = ER [®(T, Xr, V)| X¢ = Xo, Vi = V], (7.32)
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where X and V) are initial values for X and V, respectively. Thus, taking an expectation in (7.25)
is equivalent to solving the PDE (7.30). Equation (7.30), when plugging (7.29), determines the
so-called fundamental PDE (FPDE):

0P
ot

3 1. \o® ., 00 1 _0d 1, 3P
+ (a(Xt/ Vt) - Evt) a_X +b(Vt)W + Evtm—f— EC (Vt)m

0°d
+ eVVie(V)gay

+ AVEQ [cp(t, Xy, Vi+ V) — ®(t, X, Vt)} = 0. (7.33)

+ AXEQ [cb(t, Xi+ JX, V) — ®(t, Xy, Vt)}

Noth that if (7.30) holds and the process solving the SDE (7.31) has a bounded variance, that is it
a local martingale. Furthermore, if the process has zero drift, than it is a martingale and thus, the

price of the future contract can be computed as a discounted expectation under the Q measure.

The FPDE (7.33) can be solved by taking a guess on the functional form of ®(-), which allows
to transform it to a set of the ordinary differential equation (ODEs). For a system with two state
variables X; and V; as in (7.27), the guess is exponentially affine:

O(t, Xy, Vi) = exp {ipA(T)X; + B(T) Vi + C(7)}, (7.34)

where T = T — t. Computing the derivatives g%, %, %, g% and a‘—’;—g}, replacing them in (7.33),
and collecting terms with constants, X;, V;, will lead to a system of ODEs, which can be solved

subject to boundary conditions on A(-), B(-) and C(-).
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